Page 35


Starch is the principal carbohydrate reserve of plants. Corn starch currently is a primary feedstock for starch-based ethanol, plastics, loose-fill packing material, adhesives, and other industrial products. Approximately 600 million bushels of corn went into production of industrial products during the marketing year 1995 to 1996; of that total, 395 million bushels were used to produce fuel ethanol (ERS, 1996b). While the supply of corn starch has been sufficient to meet current demands, primarily anhydrous motor fuel grade and industrial ethanol, other supplies of sugar feedstocks are being evaluated to meet anticipated increases in demand for oxygenated fuels and chemicals.


Proteins are the primary means of expressing the genetic information coded in DNA. These polymers are based on building blocks of amino acid monomers whose sequence is predetermined by a genetic template. The sequence diversity of proteins is responsible for the wide array of functions performed by proteins in living organisms (OTA, 1993) (see Box 2-1). A variety of plant proteins might one day be commercially exploited as materials, but current understanding of the structural properties of most plant proteins is limited.

One of the few well-understood plant proteins is zein, an abundant protein in corn seeds. Zein makes up 39 percent of the kernel protein, or about 4 percent of the kernel weight. The protein has several properties of industrial interest, such as the ability to form fibers and films that are tough, glossy, and grease and scuff resistant. Zein resists microbial attack and cures with formaldehyde to become essentially inert. In addition, it is water insoluble and thermoplastic.

The USDA Northern Regional Research Laboratory in Peoria, Illinois, developed zein into a textile fiber in the late 1940s. Scientists generated the fiber by dissolving zein in alkali, extruding the solution through spinnerets into an acid coagulating bath, and then curing the product with formaldehyde. Zein fibers are strong, washable, and dyeable and possess other desirable properties. The Virginia-Carolina Corporation commercialized zein-based fiber as ''Vicara," producing about 5 million pounds in 1954. However, the company discontinued manufacture-shortly thereafter, perhaps because of the advent of comparable synthetic fibers. Zein's main use today is as a water-impermeable coating for pharmaceutical tablets, nuts, and candies. It also functions as a cork binder for gaskets and bottle-cap liners, a binder in ink, a varnish, and a shellac substitute. The advantageous properties of zein suggest that its industrial usefulness merits reexamination (Wall and Paulis, 1978). There is potential to alter

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement