MARINE MAMMAL POPULATIONS AND OCEAN NOISE

DETERMINING WHEN NOISE CAUSES BIOLOGICALLY SIGNIFICANT EFFECTS

Committee on Characterizing Biologically Significant Marine Mammal Behavior

Ocean Studies Board

Division on Earth and Life Studies

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, DC
www.nap.edu



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects MARINE MAMMAL POPULATIONS AND OCEAN NOISE DETERMINING WHEN NOISE CAUSES BIOLOGICALLY SIGNIFICANT EFFECTS Committee on Characterizing Biologically Significant Marine Mammal Behavior Ocean Studies Board Division on Earth and Life Studies NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES THE NATIONAL ACADEMIES PRESS Washington, DC www.nap.edu

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study was supported by Grant No. N00014-03-1-0886 between the National Academy of Sciences and the National Oceanographic Partnership Program with support from the National Oceanic and Atmospheric Administration, Office of Naval Research, National Science Foundation, and the Minerals Management Service. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. International Standard Book Number: 0-309-09449-6 (Book) International Standard Book Number: 0-309-54667-2 (PDF) Additional copies of this report are available from the National Academies Press, 500 Fifth Street, NW, Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2005 by the National Academy of Sciences. All rights reserved. Printed in the United States of America

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council. www.national-academies.org

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects This page intentionally left blank.

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects COMMITTEE ON CHARACTERIZING BIOLOGICALLY SIGNIFICANT MARINE MAMMAL BEHAVIOR DOUGLAS WARTZOK (Chair), Florida International University, Miami JEANNE ALTMANN, Princeton University, Princeton, New Jersey WHITLOW AU, University of Hawaii, Manoa KATHERINE RALLS, Smithsonian Institution, Washington, DC ANTHONY STARFIELD, University of Minnesota, St. Paul PETER L. TYACK, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts Staff JOANNE BINTZ, Study Director JENNIFER MERRILL, Study Director REBECCA NADEL, Christine Mirzayan Science and Technology Policy Intern DENISE GREENE, Senior Program Assistant SARAH CAPOTE, Senior Program Assistant TERESIA WILMORE, Program Assistant NORMAN GROSSBLATT, Senior Editor

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects OCEAN STUDIES BOARD NANCY RABALAIS (Chair), Louisiana Universities Marine Consortium, Chauvin LEE G. ANDERSON, University of Delaware, Newark WHITLOW AU, University of Hawaii, Manoa ARTHUR BAGGEROER, Massachusetts Institute of Technology, Cambridge RICHARD B. DERISO, Inter-American Tropical Tuna Commission, La Jolla, California ROBERT B. DITTON, Texas A&M University, College Station EARL DOYLE, Shell Oil (retired), Sugar Land, Texas ROBERT DUCE, Texas A&M University, College Station PAUL G. GAFFNEY, II, Monmouth University, Long Branch, New Jersey WAYNE R. GEYER, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts STANLEY R. HART, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts RALPH S. LEWIS, Connecticut Geological Survey (retired), Hartford WILLIAM F. MARCUSON III, US Army Corp of Engineers (retired), Vicksburg, Mississippi JULIAN MCCREARY JR, University of Hawaii, Honolulu JACQUELINE MICHEL, Research Planning, Inc., Columbia, South Carolina JOAN OLTMAN-SHAY, Northwest Research Associates, Inc., Bellevue, Washington ROBERT T. PAINE, University of Washington, Seattle SHIRLEY A. POMPONI, Harbor Branch Oceanographic Institution, Fort Pierce, Florida FRED N. SPIESS, Scripps Institution of Oceanography, La Jolla, California DANIEL SUMAN, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Florida

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects Staff SUSAN ROBERTS, Director JENNIFER MERRILL, Senior Program Officer DAN WALKER, Senior Program Officer ALAN B. SIELEN, Visiting Scholar ANDREAS SOHRE, Financial Associate SHIREL SMITH, Administrative Coordinator JODI BACHIM, Research Associate NANCY CAPUTO, Research Associate SARAH CAPOTE, Senior Program Assistant

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects This page intentionally left blank.

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects Preface Biologically significant is an easy modifier to insert into many descriptors, from habitat designations to pharmacological reactions. It has the attributes of a perfectly reasonable modifier. After all, who would object to putting a limit on the great panoply of varied habitats or potential responses encountered in nature? However, when one attempts to distinguish between biologically significant and biologically not significant, the first question is, To whom? The initial choice of range—from habitat to pharmacology—implies the breadth with which this modifier has been used. Biologically significant changes at the habitat level imply alterations in the composition of species that use a habitat. Biologically significant changes at the pharmacological level imply organism changes. Intermediate between those levels are the population (or stock in marine mammal management terms) and the species. The most basic goal of the Marine Mammal Protection Act (MMPA) (16 U.S.C. 1361) is to maintain marine mammals as a “significant functioning element in the ecosystem of which they are a part.” The MMPA translates that ecosystem goal to the population level by aiming to ensure that marine mammal stocks do not fall below or are restored to their optimal sustainable population sizes. Although the main goals of the MMPA are defined at the ecosystem and population levels, its primary focus of regulation is at the level of the individual. When the MMPA was enacted, marine mammal populations were threatened by hunting and by deaths resulting

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects from becoming entangled in nets or otherwise killed in fisheries. The primary regulatory mechanism in the MMPA was a prohibition of the taking of marine mammals; where “take” means to harass, hunt, capture, or kill or attempt to harass, hunt, capture, or kill any marine mammal. The prohibition of taking has reduced the death and injury of marine mammals enough that today many important threats involve habitat degradation and the cumulative effects of harassment. Although harassment is included as a prohibited taking in the MMPA, this prohibition has proved ill suited for protecting marine mammal habitat and regulating cumulative effects. One approach for protecting marine mammals might be to monitor their populations and initiate protective measures for populations in decline. However, we cannot estimate trends precisely for most marine mammal populations, and by the time a decline is detected, it may be too late. In addition, we also need methods to determine which human activities or natural phenomena are causing population declines or inhibiting population recovery. Many effects of human activities on individual marine mammals occur on a time scale of seconds to years, effects on populations on a scale of years to generations, and effects on ecosystems on a scale of generations to centuries. This report focuses on changes at the population level, but what can be observed are the much faster changes in the behavior and physiology of individuals. The basic goal of this report is to explore the scientific challenge of using short-term observations at the level of individuals to predict effects on populations. Such a predictive model would serve two functions: identifying when the cumulative sum of human effects poses a risk to a population and identifying the activities that pose the greatest risk. What little we know about behavioral responses of marine mammals to anthropogenic noise highlights the importance of context, including the demographic status of the animals receiving the sound; the characteristics, location, and movement of the sound source; and the location of the animals. The history of the animals is also important: prior exposure to the sound could have resulted in habituation or sensitization. Context includes population status and ecosystem changes; responses that would be insignificant in a population near its carrying capacity can become significant in populations that are depleted or that are encountering multiple stressors, such as El Niño. Our glimpses into the lives of marine mammals are so short that it is difficult to determine whether the small part of a behavioral reaction we usually can observe is biologically significant. In contrast with Supreme

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects Court Justice Potter Stewart’s statement with respect to pornography, “I know it when I see it” (Jacobellis v. Ohio, 378 U.S. 184, 197 [1964]), the problem in determining the biological significance of marine mammal responses is that often we do not know them when we see them. Marine mammals are so hard to observe that we may never see serious problems without studies that are targeted to understand their normal behavior and physiology in the wild. A basic tenet of responsible management and conservation is the need to balance the risks posed by overregulation and those posed by underregulation; the latter carry more weight in conditions of greater uncertainty. The depth of our uncertainty in these issues can make it difficult to calibrate the proper extent of precaution. A reader who expects this volume to provide a “Eureka” moment of insight into the biological significance of marine mammal responses to noise will be disappointed. That should not come as a surprise. Biological significance has not been well defined in many animal groups that are much more amenable to observation than marine mammals and on which much more data are available. The last few decades have seen a rapid increase in studies of the responses of marine mammals to noise, and there is growing evidence that some sounds play a role in lethal strandings of deep-diving beaked whales, but there is not one case in which data can be integrated into models to demonstrate that noise is causing adverse affects on a marine mammal population. In the case of strandings, the primary data gaps are in our ignorance of the population size and status of beaked whales, and our uncertainty about the number of animals killed or injured. For most other noise effects, the primary source of uncertainty stems from our difficulty in determining the effects of behavioral or physiological changes on an individual animal’s ability to survive, grow, and reproduce. This report contains a conceptual model designed to serve as a roadmap for developing a predictive model that will relate behavioral responses caused by anthropogenic sound to biologically significant, population-level consequences. It identifies the extent of current knowledge and data gaps in each component of the proposed conceptual model to show where research is most needed. In addition to pointing toward a decade-long research agenda for the predictive model, the report suggests management alternatives for the short term and the intermediate term. It also recommends changes in the regulatory structure to include effects of sound on marine mammals within the broader management structure now used exclusively for fisheries. The goal is a common metric for the impact of all human activities on marine mammals and consistent regulation of that impact.

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects Although a model for predicting the biological significance of different effects cannot be created today, this report offers an approach that can be implemented now to identify, within specified limits, when the responses of marine mammals to anthropogenic noise do not rise to the level of biological significance. The first step in dealing with an apparently intractable problem is to bound it, and this report describes a method for doing that.

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects Acknowledgments This report was greatly enhanced by the participants in the workshop held as part of the study. The committee would first like to acknowledge the efforts of those who gave presentations at meetings and thereby helped to set the stage for fruitful discussions in the closed sessions that followed: JAY BARLOW, Scripps Institution of Oceanography MELBOURNE BRISCOE, Office of Naval Research JEAN COCHRANE, US Fish and Wildlife Service DANIEL P. COSTA, University of California, Santa Cruz ROGER GENTRY, National Oceanic and Atmospheric Administration National Marine Fisheries Service WAYNE GETZ, University of California, Berkeley ROBERT GISINER, Office of Naval Research DANIEL GOODMAN, Montana State University BRUCE KENDALL, University of California, Santa Barbara JAMES KENDALL, Minerals Management Service S.A.L.M. KOOIJMAN, Vrije Universiteit, Amsterdam BOB KULL, Parsons BILL MORRIS, Duke University TIM RAGEN, Marine Mammal Commission L. MICHAEL ROMERO, Tufts University GORDON SWARTZMAN, Applied Physics Laboratory

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects SHRIPAD TULJAPURKAR, Stanford University JAMES YODER, National Science Foundation This report has been reviewed in draft form by persons chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards of objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following for their participation in their review of this report: HAL CASWELL, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts DAN COSTA, University of California, Santa Cruz COLLEEN REICHMUTH KASTAK, University of California, Santa Cruz ROBERT KNOX, University of California, San Diego ROBERT KULL, Parsons, Norfolk, Virginia PAUL NACHTIGALL, University of Hawaii, Kailua DON SINIFF, University of Minnesota, St. Paul NINA YOUNG, The Ocean Conservancy, Washington, DC Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by John Dowling, Harvard University, and Andrew Solow, Woods Hole Oceanographic Institution, appointed by the National Research Council, who were responsible for making certain that an independent examination of the report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of the report rests entirely with the committee and the institution.

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects Contents     EXECUTIVE SUMMARY   1 1   INTRODUCTION   13      Defining the Problem,   13      History of National Research Council Reports,   15      Call for A New National Research Council Study,   18 2   CURRENT STATE OF KNOWLEDGE OF BEHAVIORAL AND PHYSIOLOGICAL EFFECTS OF NOISE ON MARINE MAMMALS   23      Behavioral Responses to Acoustic Stimuli,   23      Physiological Responses to Acoustic Stimuli,   29      Auditory Damage,   29      Nonauditory Effects of Sound,   31      Resonance Effects,   31      Rectified Diffusion,   32      Progress on Earlier National Research Council Recommendations,   34 3   HOW TO GET FROM ACOUSTIC DISTURBANCE TO POPULATION EFFECTS   35      Current Data Collection Efforts,   46      Data Needed to Determine Physiological Responses to Acoustic Stimuli,   47

OCR for page R1
Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects      Physiological Stress Effects,   48      Toxicology,   56      Data Needed to Describe Marine Mammal Populations,   56      Individuals to Populations: Using Models to Improve Understanding,   57      Uses of Models: Prediction and Exploration,   58      Demographic Models,   61      Individual-Based Models,   62      Categorical or Qualitative Models,   64      Expert Opinion,   65      Risk Assessment,   65 4   RATIONAL MANAGEMENT WITH INCOMPLETE DATA   69      Potential Biological Removal,   71      Extension of PBR,   73      Determination of Nonsignificant Impact,   79     REFERENCES   87     APPENDIXES         A   Committee and Staff Biographies   101     B   Acronyms   105     C   Workshop Agenda and Participants List   107     D   Draft Conceptual Plan for Workshop Discussion   113     E   Scientific and Common Names   125