IMPROVED SEISMIC MONITORING IMPROVED DECISION-MAKING

Assessing the Value of Reduced Uncertainty

Committee on the Economic Benefits of Improved Seismic Monitoring

Committee on Seismology and Geodynamics

Board on Earth Sciences and Resources

Division on Earth and Life Studies

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, D.C.
www.nap.edu



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty IMPROVED SEISMIC MONITORING IMPROVED DECISION-MAKING Assessing the Value of Reduced Uncertainty Committee on the Economic Benefits of Improved Seismic Monitoring Committee on Seismology and Geodynamics Board on Earth Sciences and Resources Division on Earth and Life Studies NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty THE NATIONAL ACADEMIES PRESS, 500 Fifth Street, N.W., Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. government. Supported by the U.S. Geological Survey, Department of the Interior, under assistance Award No. 03HQGR0114. International Standard Book Number 0-309-09695-2 (Book) International Standard Book Number 0-309-55178-1 (PDF) Library of Congress Control Number 2005937437 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet http://www.nap.edu Cover: Design by Michele de la Menardiere. Copyright 2006 by the National Academy of Sciences. All rights reserved. Printed in the United States of America.

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council. www.national-academies.org

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty COMMITTEE ON THE ECONOMIC BENEFITS OF IMPROVED SEISMIC MONITORING CHRIS D. POLAND, Chair, Degenkolb Engineers, San Francisco, California JAMES AMENT, State Farm Fire and Casualty Co., Bloomington, Illinois DAVID S. BROOKSHIRE, The University of New Mexico, Albuquerque JAMES D. GOLTZ, California Governor’s Office of Emergency Services, Pasadena PETER GORDON, University of Southern California, Los Angeles STEPHANIE A. KING, Weidlinger Associates, Inc., Los Altos, California HOWARD KUNREUTHER, The Wharton School, University of Pennsylvania, Philadelphia STUART P. NISHENKO, Pacific Gas and Electric Company, San Francisco, California ADAM Z. ROSE, The Pennsylvania State University, University Park HOPE A. SELIGSON, ABS Consulting, Irvine, California PAUL G. SOMERVILLE, URS Group, Inc., Pasadena, California Liaison from Committee on Seismology and Geodynamics: TERRY C. WALLACE, Jr., Los Alamos National Laboratory, New Mexico National Research Council Staff DAVID A. FEARY, Study Director JENNIFER T. ESTEP, Administrative Associate RADHIKA S. CHARI, Senior Project Assistant (until 5/04) AMANDA M. ROBERTS, Project Assistant (from 7/04)

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty COMMITTEE ON SEISMOLOGY AND GEODYNAMICS TERRY C. WALLACE, Jr., Chair, Los Alamos National Laboratory, New Mexico ALAN LEVANDER, Vice-Chair, Rice University, Houston, Texas ROLAND BÜRGMANN, University of California, Berkeley ADAM M. DZIEWONSKI, Harvard University, Cambridge, Massachusetts WILLIAM E. HOLT, State University of New York at Stony Brook LOUISE H. KELLOGG, University of California, Davis M. MEGHAN MILLER, Central Washington University, Ellensburg JACK R. MURPHY, Science Applications International Corporation, Arlington, Virginia PAUL G. SILVER, Carnegie Institution of Washington, D.C. AARON A. VELASCO, University of Texas at El Paso RU-SHAN WU, University of California, Santa Cruz National Research Council Staff DAVID A. FEARY, Study Director VERNA J. BOWEN, Administrative Assistant

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty BOARD ON EARTH SCIENCES AND RESOURCES GEORGE M. HORNBERGER, Chair, University of Virginia, Charlottesville M. LEE ALLISON, Kansas Geological Survey, Lawrence STEVEN R. BOHLEN, Joint Oceanographic Institutions, Washington, D.C. ADAM M. DZIEWONSKI, Harvard University, Cambridge, Massachusetts RHEA L. GRAHAM, New Mexico Interstate Stream Commission, Albuquerque ROBYN HANNIGAN, Arkansas State University, Jonesboro V. RAMA MURTHY, University of Minnesota, Minneapolis RAYMOND A. PRICE, Queen’s University, Ontario, Canada MARK SCHAEFER, NatureServe, Arlington, Virginia STEVEN M. STANLEY, Johns Hopkins University, Baltimore, Maryland BILLIE L. TURNER II, Clark University, Worcester, Massachusetts STEPHEN G. WELLS, Desert Research Institute, Reno, Nevada THOMAS J. WILBANKS, Oak Ridge National Laboratory, Tennessee National Research Council Staff ANTHONY R. DE SOUZA, Director DAVID A. FEARY, Senior Program Officer ANNE M. LINN, Senior Program Officer ANN FRAZIER, Program Officer SAMMANTHA MAGSINO, Program Officer RONALD F. ABLER, Senior Scholar HEDY J. ROSSMEISSL, Senior Scholar TANJA E. PILZAK, Research Associate CAETLIN M. OFIESH, Research Assistant JENNIFER T. ESTEP, Administrative Associate VERNA J. BOWEN, Administrative Assistant JAMES B. DAVIS, Program Assistant AMANDA M. ROBERTS, Program Assistant

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty Preface For those of us who visit and assess areas devastated by earthquakes and have responsibility for ensuring that the damaging effects of earthquakes are minimized, the value of seismic monitoring as one of the essential tools is absolutely clear and unchallenged. However, providing an economic assessment of the value of this tool is a different and difficult issue, and one that has long challenged the nation’s scientists and engineers. This study, commissioned by the U.S. Geological Survey, is aimed specifically at assessing the economic benefits of modernizing and expanding seismic monitoring activities in the United States, so that the value derived from monitoring data can be compared to other activities competing for the same resources. The National Research Council—in recognition of the multidisciplinary nature of this issue—populated the study committee with representatives from the range of professions involved with geoscience, emergency management, and earthquake engineering issues, together with expert economists to ensure that the benefit analysis was undertaken with appropriate rigor. The committee accepted public testimony, deliberated thoughtfully and with considerable skepticism, and developed this report to clearly set the stage, define the issues, and discuss the costs and benefits that improved seismic monitoring will have on all aspects of earthquake science and engineering. The committee commenced this study with the expectation that it would collectively be able to identify the many areas where improved seismic monitoring information would contribute to mitigating earthquake losses and be able to use a diverse range of existing information to quantify the economic benefits. In the end, the committee concluded that

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty although it was possible to describe the numerous potential benefits, attempts to quantify them rigorously proved elusive because the required information either does not exist or is not routinely collected. In keeping with its charge, the committee used a range of assumptions to derive a very approximate estimate of potential performance-based engineering benefits to illustrate the complexity of this task as well as the magnitude of potential benefits. The recent tragedy in nations surrounding the northern Indian Ocean, caused by the 2004 Sumatran earthquake and tsunami, provided vivid testimony to the awesome power of forces within the earth’s crust, and the enormous potential that these forces pose for devastating loss of life and economic disruption. This event focused national and international attention on the capabilities of warning systems for mitigating natural disasters, leading to accelerated implementation of long-established plans to expand tsunami warning systems. Will it take a similarly devastating earthquake in the United States to accelerate long-established—but only partially funded—plans to broaden seismic monitoring programs to maximize the potential for earthquake hazard mitigation? On behalf of the committee, I would like to acknowledge and thank all the scientists and engineers who made presentations at our four committee meetings. I wish to also thank the committee members for their thoughtful, pointed, and candid views and their willingness to listen, discover the benefits, and come to agreement. Most of all, I want to thank David Feary and the other members of the NRC staff for their hard work and diligence in keeping us organized, focused, and understandable. Chris D. Poland Chair

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty Acknowledgments The committee would like to express its appreciation to the many individuals who provided briefings and other information during the information-gathering process: Richard Bernknopf, Steven Bohlen, Dan Byers, Stephen Cauffman, Bruce Clark, Lloyd Cluff, Richard Eisner, Bill Ellsworth, John Filson, Jason Freihage, Linda Gundersen, Robert Herrmann, Richard Howe, Lucy Jones, Patrick Leahy, William Leith, E.V. Leyendecker, Mike Mahoney, Steven McCabe, Charles Meade, Priscilla Nelson, Bela Palfalvi, Paul Reasenberg, Cliff Roblee, Doug Sandy, Woody Savage, Kaye Shedlock, David Simpson, Zan Turner, Craig Weaver, Gene Whitney, Mitch Withers, and Darryl Young. The committee particularly acknowledges the provision of information from Ron Tognazzini and Craig Davis (Los Angeles Department of Water and Power). This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: Gail M. Atkinson, Department of Earth Sciences, Carleton University, Ottawa, Canada

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty Stephanie E. Chang, Institute for Resources, Environment and Sustainability, and School of Community and Regional Planning, University of British Columbia, Vancouver, Canada Ronald T. Eguchi, ImageCat, Inc., Long Beach, California Robert M. Hamilton, Zelienople, Pennsylvania Peter J. May, Political Science Department, University of Washington, Seattle Claire B. Rubin, Claire B. Rubin & Associates, Arlington, Virginia Craig Tillman, Wyndham Partners Consulting Ltd., (an affiliate of Renaissance Reinsurance Ltd.), Laguna Niguel, California Richard J. Zeckhauser, John F. Kennedy School of Government, Harvard University, Cambridge, Massachusetts Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations nor did they see the final draft of the report before its release. The review of this report was overseen by William J. Petak, University of Southern California, Los Angeles. Appointed by the National Research Council, he was responsible for ensuring that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty Contents     EXECUTIVE SUMMARY   1 1   INTRODUCTION   9      The Nature of Seismic Monitoring,   11      Existing and Proposed Seismic Networks,   14      Uses of Seismic Monitoring,   22      Costs of Seismic Monitoring,   26      Extent of Losses from Earthquakes,   28      Committee Charge and Scope of Study,   37 2   THE ROLE OF SEISMIC MONITORING IN DECISION-MAKING   42      Risk Assessment: The Role of Monitoring in Defining Risk and Reducing Uncertainty,   43      Risk Perception and Choice,   49      Impact of Monitoring on Risk Management Strategies,   51      Decision-Makers/End-Users and Their Actions,   53      Technology Transfer,   57      Public Information Benefits from Monitoring,   58 3   CONCEPTUAL FRAMEWORK FOR BENEFIT ESTIMATION AND A TAXONOMY OF BENEFITS   62      Benefit Analysis Concepts and Application,   65      Conceptual Framework of Benefits,   66      Temporal Benefits Framework,   69      Benefit Estimation Principles and Process,   74

OCR for page R1
Improved Seismic Monitoring Improved Decision-Making: Assessing the Value of Reduced Uncertainty 4   BENEFITS FROM IMPROVED EARTHQUAKE HAZARD ASSESSMENT AND FORECASTING   77      Monitoring for Hazard Assessment,   78      Monitoring for Ground Motion Prediction Models,   83      Seismic Zonation for Reducing Uncertainty,   88      Monitoring for Earthquake Forecasting, Alerts, and Prediction,   94 5   BENEFITS FROM IMPROVED LOSS ESTIMATION MODELS   105      Uses of Loss Estimation Models,   106      Uncertainty in Loss Estimation Models,   108      Monitoring for Improved Loss Estimation Models,   109 6   BENEFITS FROM PERFORMANCE-BASED ENGINEERING   116      Seismic Monitoring and the Development of Earthquake Engineering,   117      Improvements in Seismic Monitoring Needed to Support Performance-Based Engineering,   120      Calculation of Benefits Provided by Performance-Based Engineering,   124      Summary,   131 7   BENEFITS FOR EMERGENCY RESPONSE AND RECOVERY   132      Monitoring for Response Readiness,   133      Real-Time Information for Emergency Response Operations,   134      Monitoring for Earthquake Recovery,   137      Recent Response Experiences,   139      Summary,   142 8   INTEGRATING THE BENEFITS—CONCLUSIONS AND RECOMMENDATIONS   144      Summary of Benefit Components,   146      Benefit Integration,   151      Recommendations,   153     REFERENCES   159     APPENDIXES         A  Excerpts from Bernknopf et al. (1993), “Societal Value of Geologic Maps”   169     B  Committee and Staff Biographies   179     C  Acronyms and Abbreviations   182