modified to meet the more demanding constraints of everyday assessment, especially assessment in the context of classrooms.

More generally, the methods used in cognitive science to design tasks linked to underlying models of knowledge and cognitive processing, observe and analyze cognitive performance, and draw inferences about what a person knows are directly applicable to many of the challenges involved in educational assessment. Furthermore, these methods can be used across a variety of assessment contexts and purposes. As developed in subsequent chapters of this report, the crux of the assessment process is the integration of empirically based models of student learning and cognition with methods for designing tasks and carefully observing student performance, and with procedures for interpreting the meaning of those observations. In the next chapter we look at how these three elements come together in the many situations in which a statistical method is needed to help interpret the observational data.


Contemporary theories of learning and knowing emphasize the way knowledge is represented, organized, and processed in the mind. Emphasis is also given to social dimensions of learning, including social and participatory practices that support knowing and understanding. This body of knowledge strongly implies that assessment practices need to move beyond a focus on component skills and discrete bits of knowledge to encompass the more complex aspects of student achievement.

Among the fundamental elements of cognition is the mind’s cognitive architecture, which includes working or short-term memory, a highly limited system, and long-term memory, a virtually limitless store of knowledge. What matters in most situations is how well one can evoke the knowledge stored in long-term memory and use it to reason efficiently about current information and problems. Therefore, within the normal range of cognitive abilities, estimates of how people organize information in long-term memory are likely to be more important than estimates of working memory capacity.

Understanding the contents of long-term memory is especially critical for determining what people know; how they know it; and how they are able to use that knowledge to answer questions, solve problems, and engage in additional learning. While the contents include both general and specific knowledge, much of what one knows is domain- and task-specific and organized into structures known as schemas. Assessments should evaluate what schemas an individual has and under what circumstances he or she regards the information as relevant. This evaluation should include how a person organizes acquired information, encompassing both strategies for problem solving and ways of chunking relevant information into manageable units.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement