Much of what humans learn is acquired through discourse and interaction with others. Thus, knowledge is often embedded in particular social and cultural contexts, including the context of the classroom, and it encompasses understandings about the meaning of specific practices such as asking and answering questions. Assessments need to examine how well students engage in communicative practices appropriate to a domain of knowledge and skill, what they understand about those practices, and how well they use the tools appropriate to that domain.

Models of cognition and learning provide a basis for the design and implementation of theory-driven instructional and assessment practices. Such programs and practices already exist and have been used productively in certain curricular areas. However, the vast majority of what is known has yet to be applied to the design of assessments for classroom or external evaluation purposes. Further work is therefore needed on translating what is already known in cognitive science to assessment practice, as well as on developing additional cognitive analyses of domain-specific knowledge and expertise.

Many highly effective tools exist for probing and modeling a person’s knowledge and for examining the contents and contexts of learning. The methods used in cognitive science to design tasks, observe and analyze cognition, and draw inferences about what a person knows are applicable to many of the challenges of designing effective educational assessments.


There is an ever-increasing amount of information about how the brain develops and processes information and how this is linked to various aspects of cognition, development, and learning. Here we briefly consider two areas of special concern—hemispheric specialization and the effects of enriched environments on brain development—because of the way they have been treated in the popular literature, especially as regards educational practices.

Hemispheric Specialization: Realities and Myths

The notion that the left and right hemispheres of the brain serve specialized functions emerged some years ago from studies of people whose speech was impaired after damage to the left hemisphere. A study by Sperry (1984) of split-brain humans popularized this notion. Essentially, these studies indicated that in most humans, the right hemisphere has become specialized for spatial and synthetic tasks and the left for verbal, analytic, and sequential tasks. Careful laboratory studies of normal humans show clear hemispheric advantages in reaction times when information such as words or spatial

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement