the snapshots provided by the current system of on-demand tests. To provide such pictures of progress, multiple sets of observations over time must be linked conceptually so that change can be observed and interpreted. Models of student progression in learning should underlie the assessment system, and tests should be designed to provide information that maps back to the progression. With such a system, we would move from “one-shot” testing situations and cross-sectional approaches for defining student performance toward an approach that focused on the processes of learning and an individual’s progress through that process (Wilson and Sloane, 2000). Thus, continuity calls for alignment along the third dimension of time.

Approximations of a Balanced System

No existing assessment systems meet all three criteria of comprehensiveness, coherence, and continuity, but many of the examples described in this report represent steps toward these goals. For instance, the Developmental Assessment program shows how progress maps can be used to achieve coherence between formative and summative assessments, as well as among curriculum, instruction, and assessment. Progress maps also enable the measurement of growth (continuity). The Australian Council for Educational Research has produced an excellent set of resource materials for teachers to support their use of a wide range of assessment strategies—from written tests to portfolios to projects at the classroom level—that can all be designed to link back to the progress maps (comprehensiveness) (see, e.g., Forster and Masters, 1996a, 1996b; Masters and Forster, 1996). The BEAR assessment shares many similar features; however, the underlying models of learning are not as strongly tied to cognitive research as they could be. On the other hand, intelligent tutoring systems have a strong cognitive research base and offer opportunities for integrating formative and summative assessments, as well as measuring growth, yet their use for large-scale assessment purposes has not yet been explored. Thus, examples in this report offer a rich set of opportunities for further development toward the goal of designing assessment systems that are maximally useful for both informing and improving learning.


Guiding the committee’s work were the premises that (1) something important should be learned from every assessment situation, and (2) the information gained should ultimately help improve learning. The power of classroom assessment resides in its close connections to instruction and teachers’ knowledge of their students’ instructional histories. Large-scale, standardized assessments can communicate across time and place, but by so

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement