NEW TOOLS FOR ASSESSMENT DESIGN AND IMPLEMENTATION

Computer and telecommunications technologies provide powerful new tools for meeting many of the challenges inherent in designing and implementing assessments that go beyond conventional practices and tap a broader repertoire of cognitive skills and knowledge. Indeed, many of the design principles and practices described in the preceding chapters would be difficult to implement without technology. For purposes of discussing these matters, a useful frame of reference is the assessment triangle introduced in Chapter 2.

The role of any given technology advance or tool can often be differentiated by its primary locus of effect within the assessment triangle. For the link between cognition and observation, technology makes it possible to design tasks with more principled connections to cognitive theories of task demands and solution processes. Technology also makes it possible to design and present tasks that tap complex forms of knowledge and reasoning. These aspects of cognition would be difficult if not impossible to engage and assess through traditional methods. With regard to the link between observation and interpretation, technology makes it possible to score and interpret multiple aspects of student performance on a wide range of tasks carefully chosen for their cognitive features, and to compare the resulting performance data against profiles that have interpretive value. In the sections that follow we explore these various connections by considering specific cases in which progress has been made.

Enhancing the Cognition-Observation Linkage
Theory-Based Item Generation

As noted in Chapter 5, a key design step is the generation of items and tasks that are consistent with a model of student knowledge and skill. Currently, this is usually a less-than-scientific process because many testing programs require large numbers of items for multiple test forms. Whether the items are similar in their cognitive demands is often uncertain. Computer programs that can automatically generate assessment items offer some intriguing possibilities for circumventing this problem and improving the linkage between cognitive theory and observation. The programs are based on a set of item specifications derived from models of the knowledge structures and processes associated with specific characteristics of an item form. For example, the Mathematics Test Creation Assistant has been programmed



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement