cess in the information-based economy described above (Resnick and Resnick, 1992; Rothman, Slattery, Vranek, and Resnick, in press). Traditional tests do not focus on many aspects of cognition that research indicates are important, and they are not structured to capture critical differences in students’ levels of understanding. For example, important aspects of learning not adequately tapped by current assessments include students’ organization of knowledge, problem representations, use of strategies, self-monitoring skills, and individual contributions to group problem solving (Glaser, Linn, and Bohrnstedt, 1997; NRC, 1999b).

The limits on the kinds of competencies currently being assessed also raise questions about the validity of the inferences one can draw from the results. If scores go up on a test that measures a relatively narrow range of knowledge and skills, does that mean student learning has improved, or has instruction simply adapted to a constrained set of outcomes? If there is explicit “teaching to the test,” at what cost do such gains in test scores accrue relative to acquiring other aspects of knowledge and skill that are valued in today’s society? This is a point of considerable current controversy (Klein, Hamilton, McCaffrey, and Stecher, 2000; Koretz and Barron, 1998; Linn, 2000).

A second issue concerns the usefulness of current assessments for improving teaching and learning—the ultimate goal of education reforms. On the whole, most current large-scale tests provide very limited information that teachers and educational administrators can use to identify why students do not perform well or to modify the conditions of instruction in ways likely to improve student achievement. The most widely used state and district assessments provide only general information about where a student stands relative to peers (for example, that the student scored at the 45th percentile) or whether the student has performed poorly or well in certain domains (for example, that the student performs “below basic in mathematics”). Such tests do not reveal whether students are using misguided strategies to solve problems or fail to understand key concepts within the subject matter being tested. They do not show whether a student is advancing toward competence or is stuck at a partial understanding of a topic that could seriously impede future learning. Indeed, it is entirely possible that a student could answer certain types of test questions correctly and still lack the most basic understanding of the situation being tested, as a teacher would quickly learn by asking the student to explain the answer (see Box 1–2). In short, many current assessments do not offer strong clues as to the types of educational interventions that would improve learners’ performance, or even provide information on precisely where the students’ strengths and weaknesses lie.

A third limitation relates to the static nature of many current assessments. Most assessments provide “snapshots” of achievement at particular points in time, but they do not capture the progression of students’ concep-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement