Page 11

BOX 1-1

Definitions of Antipersonnel Landmines

Convention on Conventional Weapons (CCW), Amended Protocol II

Antipersonnel mine means a mine primarily designed to be exploded by the presence, proximity, or contact of a person and that will incapacitate, injure, or kill one or more persons

Ottawa Convention

Antipersonnel mine means a mine designed to be exploded by the presence, proximity, or contact of a person and that will incapacitate, injure, or kill one or more persons. Mines designed to be detonated by the presence, proximity, or contact of a vehicle, as opposed to a person, that are equipped with antihandling devices are not considered antipersonnel mines as a result of being so equipped.

(seeAppendix E for text). APL that are part of mixed systems fall under this definition; antihandling devices2 do not.


The use of mine-like devices has a long history in military operations,3 but widespread concerns have arisen only recently, primarily because of the increasing proliferation of mines. A tenet of military operations is to force the enemy into a disadvantageous position by controlling terrain and the situation on the battlefield while conserving combat power. Ideally, all weapons used in war are designed to provide friendly forces with maximum flexibility and to inflict maximum damage on the enemy. In recent years, a concerted effort has been made to reduce the effects of all weapons on noncombatants—so-called collateral damage.

The first landmines in the West (in the sixteenth century) required high maintenance and were susceptible to dampness. By the nineteenth century, the availability of explosive shells and the invention of the percussion cap enabled the development of more water-resistant mines (Schneck, 1998).

APL were first used in the American Civil War by the Confederate Army during the Peninsula Campaign of 1862. Developed by Brigadier General Gabriel Rains and known as land “torpedoes” or as the subterra explosive shell, these APL would explode when a soldier (or a horse or wagon) stepped on the fuze. Although they were decried by General McClellan of the Union Army, similar devices were used by General Sherman during his March to the Sea. The idea of marking mines with small flags planted 10 feet in front of them on the defender's side was introduced at this time. Explosive mining tunnels under fortified positions were used at Vicksburg in 1863 and again at Petersburg in 1864. U.S. armies did not use mines again for 76 years (Croll, 1998).

Landmines were used between 1865 and 1914 by Prussia (1870), the British (in numerous colony wars), and Russia (1904). In response to the introduction of tanks by the British in World War I, the Germans fabricated explosive AT mines, improvised in the field from artillery projectiles. Later, mines were mass-produced to improve their efficiency. By the end of the war, both sides had a small inventory of AT mines (Croll, 1998). As early as 1918, the Germans had developed a methodology for laying minefields in a pattern, marking and recording them, and protecting them with observation and small-arms fire. Soon thereafter, the Allies also initiated a doctrinal requirement that minefields be marked and recorded.

In World War II, landmines were widely used as a counterforce to the inherent mobility of large armored formations. Concurrently, smaller APL were developed to discourage foot soldiers from disabling the AT mines4 and for use in terrain where infantry forces predominated.

The Germans, who developed extensive mine warfare practices based on their antitank operations in World War I, had refined their methods for laying mines during the interwar period. Mines were typically laid in a uniform pattern; the friendly side of a minefield was usually marked, as were lanes and cleared areas; and locations of minefields were recorded. The minefields were observed and protected with covering fire from antiarmor weapons, small arms, and artillery.

Although no new aspects of mine warfare were introduced in the Korean War, the lessons learned in World War II were tested and affirmed. Mines were used during the Korean Conflict to cover withdrawals and to reinforce defenses. However, United Nations forces did not always mark and record minefields, which sometimes resulted in casualties to friendly forces crossing unmarked minefields. In some

2 Antihandling devices perform the function of a mine fuze if someone attempts to tamper with the mine. They are intended to prevent someone from moving or removing the individual mine, not to prevent reduction of the minefield by enemy dismounts. An antihandling device usually consists of an explosive charge that is connected to, placed next to, or manufactured in the mine. The device can be attached to the mine body and activated by a wire that is attached to a firing mechanism. U.S. forces can use antihandling devices only on conventional AT mines (U.S. Army, 1998b).

3 As early as the ninth century B.C., the Assyrian army dug tunnels under walls and fortifications, creating breaches when the wooden beams supporting the tunnels were set on fire and the ground above them collapsed. The development of gunpowder by the Chinese in the ninth century and its later production and use in Europe led to more effective mining (Schneck, 1998). The term “mines” in reference to an explosive charge in or on the ground is derived from these tunneling (or mining) activities.

4 This action has come to be called a dismounted breach.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement