Page 59

Image: jpg
~ enlarge ~
FIGURE 6-1 Military effectiveness of alternatives available by 2006 based on qualitative scoring by the committee.

Recommendation. The feasibility, cost, and schedule of providing a remote delivery option for Hornet/WAM should be investigated. Shock hardening of the mine to withstand the impact of remote delivery appears to be an Ottawa-compliant, low-risk solution to current mixed minefields.


The criteria and scores are shown in Table 6-2. The details of how these scores were derived can be found in Chapter 4.

Figure 6-1 is a graphical summary of the scoring. In keeping with the Statement of Task, this graph shows only the relative military effectiveness of candidate systems without regard to cost, risk, or humanitarian factors. Each bar on the graph is a composite. The lower portion (white) shows the degree to which each system meets the military effectiveness requirements in comparison to the baseline system. If the candidate system meets all of the requirements at least as well as the baseline system, the score is 0. If it is less effective in any requirement, the score is less than 0. The upper portion (dark shading) of the bar shows capabilities that exceed those of the baseline system.

These graphs use the methodology described in Chapter 5. In general, if the total height of the bar is high, the system is likely to be militarily effective. If the value of the lower portion of the bar is near 0, the system meets most of the military requirements. If the lower bar is much lower than 0, the system probably has significant differences from the baseline mine and will not perform some desired functions. However, that system may still be militarily effective if it performs some functions much better than the baseline system. Because the scoring criteria were not weighted, these graphs should be used only for assessing trends and making qualitative comparisons.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement