Parker, M., and Leinhardt, G. (1995). Percent: A privileged proportion. Review of Educational Research, 65(4), 421-481.

Post, T., Harel, G., Behr, M., and Lesh, R. (1991). Intermediate teachers’ knowledge of rational number concepts. In E. Fennema, T. Carpenter, and S. Lamon (Eds.), Integrating research on teaching and learning mathematics (pp. 177-198). Albany, NY: State University of New York Press.

Post, T.R., Cramer, K.A., Behr, M., Lesh, R., and Harel, G. (1993). Curriculum implications of research on the learning, teaching and assessing of rational number concepts. In T.P. Carpenter, E. Fennema, and T.A. Romberg (Eds.), Rational numbers: An integration of research (pp. 327-362). Mahwah, NJ: Lawrence Erlbaum Associates.


Resnick, L.B., and Singer, J.A. (1993). Protoquantitative origins of ratio reasoning. In T.P. Carpenter, E. Fennema, and T.A. Romberg (Eds.), Rational numbers: An integration of research (pp. 107-130). Mahwah, NJ: Lawrence Erlbaum Associates.

Resnick, L.B., Nesher, P., Leonard, F., Magone, M., Omanson, S., and Peled I. (1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics Education, 20(1), 8-27.


Sowder, J.T. (1988). Mental computation and number comparison: Their roles in the development of number sense and computational estimation. In J. Hiebert and M. Behr (Eds.), Number concepts and operations in the middle grades (vol. 2, pp. 182-198). Mahwah, NJ: Lawrence Erlbaum Associates.

Sowder, J.T. (1992). Making sense of numbers in school mathematics. In G. Leinhardt, R. Putnam, and R. Hattrup, (Eds.), Analysis of arithmetic for mathematics (pp. 1-51). Mahwah, NJ: Lawrence Erlbaum Associates.

Sowder, J.T. (1995). Instructing for rational number sense. In J.T. Sowder and B.P. Schappelle (Eds.), Providing a foundation for teaching mathematics in the middle grades. Albany, NY: State University of New York Press.

Spinillo, A.G., and Bryant, P. (1991). Children’s proportional judgements: The importance of “half.” Child Development, 62, 427-440.

Streefland, L. (1991). Fractions: An integrated perspective. In L. Streefland (Ed.), Realistic mathematics education in primary school (pp. 93-118). Utrecht, The Netherlands: Freudenthal Institute.

Streefland, L. (1993). Fractions: A realistic approach. In T.P. Carpenter, E. Fennema, and T.A. Romberg (Eds.), Rational numbers: An integration of research (pp. 289-327). Mahwah, NJ: Lawrence Erlbaum Associates.


Wearne, D., and Hiebert, J. (1988). Constructing and using meaning for mathematical symbols: The case of decimal fractions. In J. Hiebert and M. Behr (Eds.), Number concepts and operations in the middle grades (vol. 2, pp. 220-235). Mahwah, NJ: Lawrence Erlbaum Associates.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement