internal linkages, particularly the decadal shifts in Rossby wave propagation upward from the troposphere, still need to be established.

ENSO has great reach, and can influence climate at high southern latitudes. A potentially important climate mode, the Antarctic Circumpolar Wave, involves the coupled ocean and atmosphere near the polar front, in the Southern Ocean (White and Peterson, 1996). This wavenumber-2 dislocation of the polar front propagates eastward at about 0.08 m. sec-1, thus taking 8 to 10 years to circumnavigate that ocean. The mode appears to be strongly excited by tropical ENSO events. At a much shorter timescale, blocking patterns in the strong westerly circulation in the southeast Pacific appear to be forced by ocean warming and divergence in the western tropical Pacific (Renwick and Revell, 1999). Couplings of this kind are achieved by Rossby-wave propagation.

The modal behavior of earth’s climate is one of the major research results of the instrumental era. This review emphasizes these modes as well as describing recent examples of such regional changes as the Dust Bowl and North Atlantic oceanic conditions that were abrupt and impacted humans and ecosystems. The connection stems from the possibility that climate can lock into one phase or another of a modal oscillation; for example, preferring the warm equatorial Pacific phase of ENSO. Possible interactions among the major climate-system modes (especially ENSO and the high-latitude annular modes) suggest that changes in one could be propagated globally. The major perturbations associated with greenhouse-induced climate change may affect the likelihood of such changes, and their geographic extent.


A great wealth of evidence related to abrupt climate change has been collected, although important data gaps remain. Interpretation of sedimentary records to learn about past climate changes is improving rapidly. The unequivocal evidence of repeated large, widespread, abrupt climate changes in the past is striking. Such events were especially prominent during the cooling into and warming out of the most recent global ice age. However, the events are not restricted to cold times as shown by the cooling about 8,200 years ago, which punctuated conditions that in many places were similar to or even slightly warmer than recently. Other events during the current Holocene warm time may not have been as globally dramatic as the

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement