Page 10

chemical compounds, both natural 1 and anthropogenic, are removed in hours, days, or weeks, and do not accumulate in significant concentrations. Some can have an indirect greenhouse effect, as with carbon monoxide (CO). 2 If the average survival time for a gas in the atmosphere is a year or longer, then the winds have time to spread it throughout the lower atmosphere, and its absorption of terrestrial infrared radiation occurs at all latitudes and longitudes. All the listed greenhouse gases except ozone are released to the atmosphere at Earth's surface and are spread globally throughout the lower atmosphere.

The lifetime of CH4 in the atmosphere is 10–12 years. Nitrous oxide and the CFCs have century-long lifetimes before they are destroyed in the stratosphere. Atmospheric CO2 is not destroyed chemically, and its removal from the atmosphere takes place through multiple processes that transiently store the carbon in the land and ocean reservoirs, and ultimately as mineral deposits. A major removal process depends on the transfer of the carbon content of near-surface waters to the deep ocean, which has a century time scale, but final removal stretches out over hundreds of thousands of years. Reductions in the atmospheric concentrations of these gases following possible lowered emission rates in the future will stretch out over decades for methane, and centuries and longer for carbon dioxide and nitrous oxide.

Methane, nitrous oxide, and ozone all have natural sources, but they can also be introduced into the atmosphere by the activities of humankind. These supplementary sources have contributed to the increasing concentrations of these gases during the 20th century.

Carbon Dioxide

While all of the major greenhouse gases have both natural and anthropogenic atmospheric sources, the nature of these processes varies widely among them. Carbon dioxide is naturally absorbed and released by the terrestrial biosphere as well as by the oceans. Carbon dioxide is also formed by the burning of wood, coal, oil, and natural gas, and these activities have increased steadily during the last two centuries since the Industrial Revolution. That the burning of fossil fuels is a major cause of the CO2 increase is evidenced by the concomitant decreases in the relative abundance of both the stable and radioactive carbon isotopes 3 and the decrease in atmospheric oxygen. Continuous high-precision measurements have been made of its atmospheric concentrations only since 1958, and by the year 2000 the concentrations had increased 17% from 315 parts per million by volume (ppmv) to 370 ppmv. While the year-to-year increase varies, the average annual increase of 1.5 ppmv/year over the past two decades is slightly greater than during the 1960s and 1970s. A marked seasonal oscillation of carbon dioxide concentration exists, especially in the northern hemisphere because of the extensive draw down of carbon dioxide every spring and summer as the green plants convert carbon dioxide into plant material, and the return in the rest of the year as decomposition exceeds photosynthesis. The seasonal effects are quite different north and south of the equator, with the variation much greater in the northern hemisphere where most of Earth's land surface and its vegetation and soils are found.

The atmospheric CO2 increase over the past few decades is less than the input from human activities because a fraction of the added CO2 is removed by oceanic and terrestrial processes. Until recently, the partitioning of the carbon sink between the land and sea has been highly uncertain, but recent high-precision measurements of the atmospheric oxygen:nitrogen (O2:N2) ratio have provided a crucial constraint: fossil fuel burning and terrestrial uptake processes have different O2:CO2 ratios, whereas the ocean CO2 sink has no significant impact on atmospheric O2. The atmospheric CO2 increase for the 1990s was about half the CO2 emission from fossil fuel combustion, with the oceans and land both serving as important repositories of the excess carbon, i.e., as carbon sinks.

Land gains and loses carbon by various processes: some natural-like photosynthesis and decomposition, some connected to land use and land management practices, and some responding to the increases of carbon dioxide or other nutrients necessary for plant growth. These gains or losses dominate the net land exchange of carbon dioxide with the atmosphere, but some riverine loss to oceans is also significant. Most quantifiable, as by forest and soil inventories, are the above- and below-ground carbon losses from land clearing and the gains in storage in trees from forest recovery and management. Changes in the frequency of forest fires, such as from fire suppression policies, and agricultural practices for soil conservation may modify the carbon stored by land. Climate variations, through their effects on plant growth and decomposition of soil detritus, also have large effects on terrestrial carbon fluxes and storage on a year-to-year basis. Land modifications, mainly in the middle latitudes of the northern hemisphere, may have been a net source of carbon dioxide to the atmosphere over much of the last century. However, quantitative estimates have only been possible over the last two decades, when forest clearing had shifted to the tropics. In the 1980s land became a small net sink for

1While the activities of mankind are part of the natural world, the convention exists in most discussions of the atmosphere that “natural processes” are those that would still exist without the presence of human beings; those processes that are significantly influenced by humans are called “anthropogenic”.

2Both carbon monoxide and methane are removed from the atmosphere by chemical reaction with hydroxyl (OH). An increase in the carbon monoxide uses up hydroxyl, slowing methane removal and allowing its concentration and greenhouse effect to increase.

3Fossil fuels are of biological origin and are depleted in both the stable isotope 13C and the radioactive isotope 14C, which has a half-life of 5600 years.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement