Page 12

identified as agents causing the destruction of stratospheric ozone, 5 their production was banned in the industrial countries as of January 1996 under the terms of the 1992 revision of the Montreal Protocol, and further emissions have almost stopped. The atmospheric concentrations of CFC-11 and CFC-113 are now slowly decreasing, and that of CFC-12 has been essentially level for the past several years. However, because of the century-long lifetimes of these CFC molecules, appreciable atmospheric concentrations of each will survive well into the 22nd century.

Many other fluorinated compounds (such as carbon tetrafluoride, CF4, and sulfur hexafluoride, SF6), also have technological utility, and significant greenhouse gas capabilities. Their very long atmospheric lifetimes are a source of concern even though their atmospheric concentrations have not yet produced large radiative forcings. Members of the class of compounds called hydrofluorocarbons (HFCs) also have a greenhouse effect from the fluorine, but the hydrogen in the molecule allows reaction in the troposphere, reducing both its atmospheric lifetime and the possible greenhouse effect. The atmospheric concentrations of all these gases, which to date are only very minor greenhouse contributors, need to be continuously monitored to ensure that no major sources have developed. The sensitivity and generality of modern analytic systems make it unlikely that any additional greenhouse gas will be discovered that is already a significant contributor to the current total greenhouse effect.


Sulfate and carbon-bearing compounds associated with particles (i.e., carbonaceous aerosols) are two classes of aerosols that impact radiative balances, and therefore influence climate.

Black Carbon (soot)

The study of the role of black carbon in the atmosphere is relatively new. As a result it is characterized poorly as to its composition, emission source strengths, and influence on radiation. Black carbon is an end product of the incomplete combustion of fossil fuels and biomass, the latter resulting from both natural and human-influenced processes. Most of the black carbon is associated with fine particles (radius <0.2 µm) that have global residence times of about one week. These lifetimes are considerably shorter than those of most greenhouse gases, and thus the spatial distribution of black carbon aerosol is highly variable, with the greatest concentrations near the production regions. Because of the scientific uncertainties associated with the sources and composition of carbonaceous aerosols, projections of future impacts on climate are difficult. However, the increased burning of fossil fuels and the increased burning of biomass for land clearing may result in increased black carbon concentration globally.


The precursor to sulfate is sulfur dioxide gas, which has two primary natural sources: emissions from marine biota and volcanic emissions. During periods of low volcanic activity, the primary source of sulfur dioxide in regions downwind from continents is the combustion of sulfur-rich coals; less is contributed by other fossil fuels. In oceanic regions far removed from continental regions, the biologic source should dominate. However, model analyses, accounting for the ubiquitous presence of ships, indicate that even in these remote regions combustion is a major source of the sulfur dioxide. Some of the sulfur dioxide attaches to sea-salt aerosol where it is oxidized to sulfate. The sea salt has a residence time in the atmosphere on the order of hours to days, and it is transported in the lower troposphere. Most sulfate aerosol is associated with small aerosols (radius <1µm) and is transported in the upper troposphere with an atmospheric lifetime on the order of one week. Recent “clean coal technologies” and the use of low sulfur fossil fuels have resulted in decreasing sulfate concentrations, especially in North America and regions downwind. Future atmospheric concentrations of sulfate aerosols will be determined by the extent of non-clean coal burning techniques, especially in developing nations.


Figure 1 summarizes climate forcings that have been introduced during the period of industrial development, between 1750 and 2000, as estimated by the IPCC. Some of these forcings, mainly greenhouse gases, are known quite accurately, while others are poorly measured. A range of uncertainty has been estimated for each forcing, represented by an uncertainty bar or “whisker.” However, these estimates are partly subjective, and it is possible that the true forcing falls outside the indicated range in some cases.

Greenhouse Gases

Carbon dioxide (CO2) is probably the most important climate forcing agent today, causing an increased forcing of about 1.4W/m2. CO2 climate forcing is likely to become more dominant in the future as fossil fuel use continues. If fossil fuels continue to be used at the current rate, the added

5Eighty-five percent of the mass of the atmosphere lies in the troposphere, the region between the surface and an altitude of about 10 miles. About 90% of Earth's ozone is found in the stratosphere, and the rest is in the troposphere.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement