Page 14

is at least 0.4W/m2. It also has been suggested that the indirect effects of black carbon—which include reducing low-level cloud cover (by heating of the layer), making clouds slightly “dirty” (darker), and lowering of the albedo of snow and sea ice—might double this forcing to 0.8W/m2. The conclusion is that the black carbon aerosol forcing is uncertain but may be substantial. Thus there is the possibility that decreasing black carbon emissions in the future could have a cooling effect that would at least partially compensate for the warming that might be caused by a decrease in sulfates.

Other aerosols are also significant. Organic carbon aerosols are produced naturally by vegetation and anthropogenically in the burning of fossil fuels and biomass. Organic carbon aerosols thus accompany and tend to be absorbed by soot aerosols, and they are believed to increase the toxicity of the aerosol mixture. It is expected that efforts to reduce emissions of black carbon would also reduce organic carbon emissions. Ammonium nitrate (not included in Figure 1) recently has been estimated to cause a forcing of –0.2W/m2.

Mineral dust, along with sea salt, sulfates, and organic aerosols, contributes a large fraction of the global aerosol mass. It is likely that human land-use activities have influenced the amount of mineral dust in the air, but trends are not well measured. Except for iron-rich soil, most mineral dust probably has a cooling effect, but this has not been determined well.

The greatest uncertainty about the aerosol climate forcing—indeed, the largest of all the uncertainties about global climate forcings—is probably the indirect effect of aerosols on clouds. Aerosols serve as condensation nuclei for cloud droplets. Thus, anthropogenic aerosols are believed to have two major effects on cloud properties: the increased number of nuclei results in a larger number of smaller cloud droplets, thus increasing the cloud brightness (the Twomey effect), and the smaller droplets tends to inhibit rainfall, thus increasing cloud lifetime and the average cloud cover on Earth. Both effects reduce the amount of sunlight absorbed by Earth and thus tend to cause global cooling. The existence of these effects has been verified in field studies, but it is extremely difficult to determine their global significance. Climate models that incorporate the aerosol-cloud physics suggest that these effects may produce a negative global forcing on the order of 1 W/m2 or larger. The great uncertainty about this indirect aerosol climate forcing presents a severe handicap both for the interpretation of past climate change and for future assessments of climate changes.

Other Forcings

Other potentially important climate forcings include volcanic aerosols, anthropogenic land use, and solar variability. Stratospheric aerosols produced by large volcanoes that eject gas and dust to altitudes of 12 miles or higher can cause a climate forcing as large as several watts per square meter on global average. However, the aerosols fall out after a year or two, so unless there is an unusual series of eruptions, they do not contribute to long-term climate change.

Land-use changes, especially the removal or growth of vegetation, can cause substantial regional climate forcing. One effect that has been evaluated in global climate models is the influence of deforestation. Because forests are dark and tend to mask underlying snow, the replacement of forests by crops or grass yields a higher albedo surface and thus a cooling effect. This effect has been estimated to yield a global cooling tendency in the industrial era equivalent to a forcing of –0.2W/m2. Land use changes have been an important contributor to past changes of atmospheric carbon dioxide. However, the impacts of such changes on climate may be much more significant on regional scales than globally, and largely act through changes of the hydrologic cycle. Such impacts are currently poorly characterized because they depend on complex modeling details that are still actively being improved.

Solar irradiance, the amount of solar energy striking Earth, has been monitored accurately only since the late 1970s. However, indirect measures of solar activity suggest that there has been a positive trend of solar irradiance over the industrial era, providing a forcing estimated at about 0.3 W/m2. Numerous possible indirect forcings associated with solar variability have been suggested. However, only one of these, ozone changes induced by solar ultraviolet irradiance variations, has convincing observational support. Some studies have estimated this indirect effect to enhance the direct solar forcing by 0.1 W/m2, but this value remains highly uncertain. Although the net solar forcing appears small in comparison with the sum of all greenhouse gases, it is perhaps more appropriate to compare the solar forcing with the net anthropogenic forcing. Solar forcing is very uncertain, but almost certainly much smaller than the greenhouse gas forcing. It is not implausible that solar irradiance has been a significant driver of climate during part of the industrial era, as suggested by several modeling studies. However, solar forcing has been measured to be very small since 1980, and greenhouse gas forcing has certainly been much larger in the past two decades. In any case, future changes in solar irradiance and greenhouse gases require careful monitoring to evaluate their future balance. In the future, if greenhouse gases continue to increase rapidly while aerosol forcing moderates, solar forcing may be relatively less important. Even in that case, however, the difference between an increasing and decreasing irradiance could be significant and affect interpretation of climate change, so it is important that solar variations be accurately monitored.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement