National Academies Press: OpenBook

Climate Change Science: An Analysis of Some Key Questions (2001)

Chapter: 5. Observed Climate Change During the Industrial Era

« Previous: 4. Climate System Models
Suggested Citation:"5. Observed Climate Change During the Industrial Era." National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: The National Academies Press. doi: 10.17226/10139.
×

Page 16

5 Observed Climate Change During the Industrial Era

Is climate change occurring? If so, how?

Are the changes due to human activities?

THE OCCURRENCE OF CLIMATE CHANGE

A diverse array of evidence points to a warming of global surface air temperatures. Instrumental records from land stations and ships indicate that global mean surface air temperature warmed by about 0.4–0.8°C (0.7–1.5°F) during the 20th century. The warming trend is spatially widespread and is consistent with the global retreat of mountain glaciers, reduction in snow-cover extent, the earlier spring melting of ice on rivers and lakes, the accelerated rate of rise of sea level during the 20th century relative to the past few thousand years, and the increase in upper-air water vapor and rainfall rates over most regions. A lengthening of the growing season also has been documented in many areas, along with an earlier plant flowering season and earlier arrival and breeding of migratory birds. Some species of plants, insects, birds, and fish have shifted towards higher latitudes and higher elevations. The ocean, which represents the largest reservoir of heat in the climate system, has warmed by about 0.05°C (0.09°F) averaged over the layer extending from the surface down to 10,000 feet, since the 1950s.

Pronounced changes have occurred over high latitudes of the Northern Hemisphere. Analysis of recently declassified data from U.S. and Russian submarines indicates that sea ice in the central Arctic has thinned since the 1970s. Satellite data also indicate a 10–15% decrease in summer sea ice concentration over the Arctic as a whole, which is primarily due to the retreat of the ice over the Siberian sector. A decline of about 10% in spring and summer continental snow cover extent over the past few decades also has been observed. Some of these high latitude changes are believed to be as much or more a reflection of changes in wintertime wind patterns as a direct consequence of global warming per se. The rate of warming has not been uniform over the 20th century. Most of it occurred prior to 1940 and during the past few decades. The Northern Hemisphere as a whole experienced a slight cooling from 1946–75, and the cooling during that period was quite marked over the eastern United States. The cause of this hiatus in the warming is still under debate. The hiatus is evident in averages over both Northern and Southern Hemispheres, but it is more pronounced in the Northern Hemisphere. One possible cause of this feature is the buildup of sulfate aerosols due to the widespread burning of high sulfur coal during the middle of the century, followed by a decline indicated by surface sulfate deposition measurements. It is also possible that at least part of the rapid warming of the Northern Hemisphere during the first part of the 20th century and the subsequent cooling were of natural origin—a remote response to changes in the oceanic circulation at subarctic latitudes in the Atlantic sector, as evidenced by the large local temperature trends over this region. Suggestions that either variations in solar luminosity or the frequency of major volcanic emissions could have contributed to the irregular rate of warming during the 20th century cannot be excluded.

The IPCC report compares the warming of global mean temperature during the 20th century with the amplitude of climate variations over longer time intervals, making use of recent analyses of tree ring measurements from many different sites, data from the Greenland ice cores, and bore hole temperature measurements. On the basis of these analyses, they conclude that the 0.6°C (1.1°F) warming of the Northern Hemisphere during the 20th century is likely to have been the largest of any century in the past thousand years. This result is based on several analyses using a variety of

Suggested Citation:"5. Observed Climate Change During the Industrial Era." National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: The National Academies Press. doi: 10.17226/10139.
×

Page 17

proxy indicators, some with annual resolution and others with less resolved time resolution. The data become relatively sparse prior to 1600, and are subject to uncertainties related to spatial completeness and interpretation making the results somewhat equivocal, e.g., less than 90% confidence. Achieving greater certainty as to the magnitude of climate variations before that time will require more extensive data and analysis.

Although warming at Earth's surface has been quite pronounced during the past few decades, satellite measurements beginning in 1979 indicate relatively little warming of air temperature in the troposphere. The committee concurs with the findings of a recent National Research Council report, 1which concluded that the observed difference between surface and tropospheric temperature trends during the past 20 years is probably real, as well as its cautionary statement to the effect that temperature trends based on such short periods of record, with arbitrary start and end points, are not necessarily indicative of the long-term behavior of the climate system. The finding that surface and troposphere temperature trends have been as different as observed over intervals as long as a decade or two is difficult to reconcile with our current understanding of the processes that control the vertical distribution of temperature in the atmosphere.

THE EFFECT OF HUMAN ACTIVITIES

Because of the large and still uncertain level of natural variability inherent in the climate record and the uncertainties in the time histories of the various forcing agents (and particularly aerosols), a causal linkage between the buildup of greenhouse gases in the atmosphere and the observed climate changes during the 20th century cannot be unequivocally established. The fact that the magnitude of the observed warming is large in comparison to natural variability as simulated in climate models is suggestive of such a linkage, but it does not constitute proof of one because the model simulations could be deficient in natural variability on the decadal to century time scale. The warming that has been estimated to have occurred in response to the buildup of greenhouse gases in the atmosphere is somewhat greater than the observed warming. At least some of this excess warming has been offset by the cooling effect of sulfate aerosols, and in any case one should not necessarily expect an exact correspondence because of the presence of natural variability.

The cooling trend in the stratosphere, evident in radiosonde data since the 1960s and confirmed by satellite observations starting in 1979, is so pronounced as to be difficult to explain on the basis of natural variability alone. This trend is believed to be partially a result of stratospheric ozone depletion and partially a result of the buildup of greenhouse gases, which warm the atmosphere at low levels but cool it at high levels. The circulation of the stratosphere has responded to the radiatively induced temperature changes in such a way as to concentrate the effects in high latitudes of the winter hemisphere, where cooling of up to 5°C (9°F) has been observed.

There have been significant changes in the atmospheric circulation during the past several decades: e.g., the transition in climate over the Pacific sector around 1976 that was analogous in some respects to a transition toward more “El Niño-like” conditions over much of the Pacific, and the more gradual strengthening of the wintertime westerlies over sub-polar latitudes of both Northern and Southern Hemispheres. Such features bear watching, lest they be early indications of changes in the natural modes of atmospheric variability triggered by human induced climate change. To place them in context, however, it is worth keeping in mind that there were events of comparable significance earlier in the record, such as the 1930s dust bowl.

1Reconciling Observations of Global Temperature Change, 2000.

Suggested Citation:"5. Observed Climate Change During the Industrial Era." National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: The National Academies Press. doi: 10.17226/10139.
×
Page 16
Suggested Citation:"5. Observed Climate Change During the Industrial Era." National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: The National Academies Press. doi: 10.17226/10139.
×
Page 17
Next: 6. Future Climate Change »
Climate Change Science: An Analysis of Some Key Questions Get This Book
×
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The warming of the Earth has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. Climate Change Science: An Analysis of Some Key Questions, a new report by a committee of the National Research Council, characterizes the global warming trend over the last 100 years, and examines what may be in store for the 21st century and the extent to which warming may be attributable to human activity.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!