Page 7

sea ice. This is a positive feedback because the darker ocean absorbs more sunlight than the sea ice it replaced. The responses of atmospheric water vapor amount and clouds probably generate the most important global climate feedbacks. The nature and magnitude of these hydrologic feedbacks give rise to the largest source of uncertainty about climate sensitivity, and they are an area of continuing research.

As just mentioned, a doubling of the concentration of carbon dioxide (from the pre-Industrial value of 280 parts per million) in the global atmosphere causes a forcing of 4W/ m2. The central value of the climate sensitivity to this change is a global average temperature increase of 3°C (5.4°F), but with a range from 1.5°C to 4.5°C (2.7 to 8.1°F) (based on climate system models: see section 4). The central value of 3°C is an amplification by a factor of 2.5 over the direct effect of 1.2°C (2.2°F). Well-documented climate changes during the history of Earth, especially the changes between the last major ice age (20,000 years ago) and the current warm period, imply that the climate sensitivity is near the 3°C value. However, the true climate sensitivity remains uncertain, in part because it is difficult to model the effect of cloud feedback. In particular, the magnitude and even the sign of the feedback can differ according to the composition, thickness, and altitude of the clouds, and some studies have suggested a lesser climate sensitivity. On the other hand, evidence from paleoclimate variations indicates that climate sensitivity could be higher than the above range, although perhaps only on longer time scales.


Climate fluctuates in the absence of any change in forcing, just as weather fluctuates from day to day. Climate also responds in a systematic way to climate forcings, but the response can be slow because the ocean requires time to warm (or cool) in response to the forcing. The response time depends upon the rapidity with which the ocean circulation transmits changes in surface temperature into the deep ocean. If the climate sensitivity is as high as the 3°C mid-range, then a few decades are required for just half of the full climate response to be realized, and at least several centuries for the full response. 1

Such a long climate response time complicates the climate change issue for policy makers because it means that a discovered undesirable climate change is likely to require many decades to halt or reverse.

Increases in the temperature of the ocean that are initiated in the next few decades will continue to raise sea level by ocean thermal expansion over the next several centuries. Although society might conclude that it is practical to live with substantial climate change in the coming decades, it is also important to consider further consequences that may occur in later centuries. The climate sensitivity and the dynamics of large ice sheets become increasingly relevant on such longer time scales.

It is also possible that climate could undergo a sudden large change in response to accumulated climate forcing. The paleoclimate record contains examples of sudden large climate changes, at least on regional scales. Understanding these rapid changes is a current research challenge that is relevant to the analysis of possible anthropogenic climate effects.

1The time required for the full response to be realized depends, in part, on the rate of heat transfer from the ocean mixed layer to the deeper ocean. Slower transfer leads to shorter response times on Earth's surface.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement