National Academies Press: OpenBook
« Previous: Appendix A2: DOE's Response to the Interim Report
Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×

Page 123

Appendix B

Human Intrusion Scenarios

Oil, gas and other mineral resources are frequently found in association with salt beds, such as the Salado, where the WIPP is situated. The region around the WIPP has known a high rate of drilling activities in the past and future energy trends indicate that there will be incentives to explore the region again, once institutional controls are removed (starting 100 years after the closure of the repository). The risk of drilling directly into the repository and thus creating pathways for the release of radionuclides into the environment will then increase. Drilling through the repository could transport radioactive materials from the repository to the surface or bring water in contact with substances stored in the repository. The following two scenarios are possible sources of concern about the performance of the repository and have been taken into account in the performance assessment of the WIPP.

    1. If there were an oilfield water-flooding operation in the vicinity of WIPP, a large amount of brine could flow from a leaky injection well and induce a hydraulic fracture in the anhydrite (or marker bed) directly above or below the WIPP repository (Box B.1). If, at some later time, another well were drilled through the repository and into this brine-filled fracture, the high-pressure brine in the fracture could flow through the borehole and flood the repository causing a release of radioactive materials. The scenario is known as the Hartman scenario.

    2. Direct drilling into the WIPP repository could allow circulating drilling fluid to bring radioactive materials to the surface through a borehole as cuttings or spallings. The situation could be serious if the repository were flooded with high-pressure brines. The Sandia National Laboratories examined three possible flooding scenarios, designated as E1, E2, and E1E2, in their performance assessment. These scenarios are briefly explained in Box B.2, Box B.3, and Box B.4 and they are described in detail in the Compliance Certification Application (DOE, 1996).

Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×

Page 124

Image: jpg
~ enlarge ~
Box B.1: The Hartman Scenario is a scenario in which water from a leaky injection well induces a hydraulic fracture in the anhydrite below or above the repository. If, at some later time, another well is drilled through the repository, the water in the fracture could flow through borehole into the repository.

Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×

Page 125

Image: jpg
~ enlarge ~
Box B.2: The E1 Scenario is any inadvertent penetration of a waste panel by a borehole that also penetrates a Castile brine reservoir. Sources of brine in the E1 scenario are the brine reservoir, the Salado, and under certain conditions, the units above the Salado.

Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×

Page 126

Image: jpg
~ enlarge ~
Box B.3: E2 is the simplest scenario for inadvertent human intrusion into a waste disposal panel. In this scenario, a panel is penetrated by a drill bit; cuttings, caving, spallings, and brine flow releases may occur in the borehole after it is plugged and abandoned. Cuttings will be discharged at the surface and may contain waste material if the borehole penetrates waste drums. Cavings, which include material eroded from the borehole wall during drilling, may also contain radionuclide waste from the repository horizon. Spallings include solid material carried into the borehole during rapid depressurization of the waste disposal region. The repository horizon could be pressurized by gas generation from degradation of the waste, organic materials and metal corrosion. Brine can be present in the Salado from natural sources or human activities associated with other drilling or production activities. Release to the biosphere is either to the surface or through the Culebra via a leaking casing.

Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×

Page 127

Image: jpg
~ enlarge ~
Box B.4: The E1E2 scenario involves multiple well penetrations of a waste panel, with one well penetrating a high-pressure brine panel below. Brine flows from a brine source through well E1 through the repository and is released through well E2. This flow path has the potential to bring large quantities of brine in direct contact with waste in the panel and to bring the contaminated brine to the overlying Salado or Culebra.

Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×
Page 123
Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×
Page 124
Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×
Page 125
Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×
Page 126
Suggested Citation:"Appendix B: Human Intrusion Scenarios." National Research Council. 2001. Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/10143.
×
Page 127
Next: Appendix C: Biographical Sketches of Committee Members »
Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant: Final Report Get This Book
×
Buy Paperback | $51.00 Buy Ebook | $40.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The Waste Isolation Pilot Plant (WIPP) is a deep underground mined facility for the disposal of transuranic waste resulting from the nation's defense program. Transuranic waste is defined as waste contaminated with transuranic radionuclides with half-life greater than 20 years and activity greater than 100 nanocuries per gram. The waste mainly consists of contaminated protective clothing, rags, old tools and equipment, pieces of dismantled buildings, chemical residues, and scrap materials. The total activity of the waste expected to be disposed at the WIPP is estimated to be approximately 7 million curies, including 12,900 kilograms of plutonium distributed throughout the waste in very dilute form. The WIPP is located near the community of Carlsbad, in southeastern New Mexico. The geological setting is a 600-meter thick, 250 million-year-old saltbed, the Salado Formation, lying 660 meters below the surface.

The National Research Council (NRC) has been providing the U.S. Department of Energy (DOE) scientific and technical evaluations of the WIPP since 1978. The committee's task is twofold: (1) to identify technical issues that can be addressed to enhance confidence in the safe and long-term performance of the repository and (2) to identify opportunities for improving the National Transuranic (TRU) Program for waste management, especially with regard to the safety of workers and the public.

This is the first full NRC report issued following the certification of the facility by the U.S. Environmental Protection Agency (EPA) on May 18, 1998. An interim report was issued by the committee in April 2000 and is reproduced in this report. The main findings and recommendations from the interim report have been incorporated into the body of this report. The overarching finding and recommendation of this report is that the activity that would best enhance confidence in the safe and long-term performance of the repository is to monitor critical performance parameters during the long pre-closure phase of repository operations (35 to possibly 100 years). Indeed, in the first 50 to 100 years the rates of important processes such as salt creep, brine inflow (if any), and microbial activity are predicted to be the highest and will be less significant later. The committee recommends that the results of the on-site monitoring program be used to improve the performance assessment for recertification purposes. These results will determine whether the need for a new performance assessment is warranted. For the National TRU Program, the committee finds that the DOE is implementing many of the recommendations of its interim report. It is important that the DOE continue its efforts to improve the packaging, characterization, and transportation of the transuranic waste.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!