Page 92

5. Reichle, D., J. Houghton, B. Kane, J. Ekmann, S. Benson, J. Clarke, R. Dahlman, G. Hendrey, H. Herzog, J. Hunter-Cevera, G. Jacobs, R. Judkins, J. Ogden, A. Palmisano, R. Socolow, J. Stringer, T. Surles, A. Wolsky, N. Woodward, and M. York. 1999 . Carbon Sequestration Research and Development. U. S. Department of Energy : Washington, D.C.

6. Aresta, M. 1998 . Advances in Chemical Conversions for Mitigating Carbon Dioxide; Studies in Surface Science and Catalysis 114, 65-76.

7. Darensbourg, D.J., and M.W. Holtcamp. 1996 . Coord. Chem. Rev. 153, 155-174.

8. Ghenciu, E.G., and E.J. Beckman. 1998 . “Carbon Dioxide”

9. Kendall, J.L., D.A. Canelas, J.L. Young, and J.M. DeSimone. 1999 . Chem. Rev. 99, 543-563.

10. Jessop, P.G., T. Ikariya, and R. Noyori. 1999 . Chem. Rev. 99, 475-493.

11. Blanchard, L.A., D. Hancu, E.J. Beckman, and J.F. Brennecke. 1999 . Nature 399, 28-29.

12. Fujita, E.; C. Creutz, N. Sutin, and D.J. Szalda. J. Am. Chem. Soc. 113, 343-353, 1991 .

13. Fujita, E. 1999 . Coord. Chem. Rev. 185–186, 373–384.

14. Jessop, P.G., T. Ikariya, and R. Noyori. 1995 . Chem. Rev. 99, 259-271.

15. Arakawa, H. 1998 . Advances in Chemical Conversions for Mitigating Carbon Dioxide; Studies in Surface Science and Catalysis 114, 19-30.

16. Kieffer, R., and L. Udron. 1998 . Advances in Chemical Conversions for Mitigating Carbon Dioxide; Studies in Surface Science and Catalysis 114, 87-96.

17. Inui, T., M. Anpo, K. Izui, S. Yanagida, and Y. Yamaguchi. 1998 . Advances in Chemical Conversions for Mitigating Carbon Dioxide, Delmon, B., and J. T. Yates., Eds. Elsevier : Amsterdam .

18. Schwarz, H.A., and R.W. Dodson. 1989 . J. Phys. Chem. 93, 409-414.

19. Schwarz, H.A., C. Creutz, and N. Sutin. 1985 . Inorg. Chem. 24, 433-439.

20. Sutin, N., C. Creutz, and E. Fujita. 1997 . Commts. Inorg. Chem. 19, 67-92.

21. Keene, F.R., and B.P. Sullivan. 1993 . Pp. 118-140 in Mechanisms of the Electrochemical Reduction of Carbon Dioxide Catalyzed by Transition metal Complexes, Sullivan, B.P., K. Krist, and H.E. Guard, Eds.; Elsevier : New York.

22. Hori, Y., A. Murata, and R. Takahashi. 1989 . J. Chem. Soc., Faraday Trans. 185, 2309-2326.

23. Creutz, C. 1993 . Carbon Dioxide Binding to Transition-Metal Center. Pp. 19-67 in Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, B.P. Anllivan, Amsterdam : Elsevier .

24. Gibson, D.H. 1996 . Chem. Rev. 2063-2095.

25. Wander, S.A., A. Miedaner, B.C. Noll, R.M.Barkley, and D.L. DuBois. 1996 . Organometallics 3360-3373.

26. DuBois, D.L., A. Miedaner, and R.C. Haltiwanger. 1991 . J. Am. Chem. Soc. 113, 8753.

27. Collin, J. P., and J.P. Sauvage. 1989 . Coord. Chem. Rev. 93, 245-268.

28. Fujita, E. and B.S. Brunschwig. 2001 . Pp 88-126 in Homogeneous Redox Catalysis of CO2 Fixation, Balzani, V. Ed.; Wiley-VCH , Weinheim Vol IV.


Glenn Crosby, Washington State University: Carol, I have not been involved with the Department of Energy for several years in this kind of research, but what has happened to the level of funding for the utilization of, say, protons for promoting photocatalysis and photoelectron over the last few years?

Carol Creutz: I am going to defer to Bill Millman from Chemical Sciences.

Bill Millman, Department of Energy: Well, in flat-budget scenarios, it has essentially gone down approximately 1.5% per year over the last about six years. In real terms—in constant dollars—it is a significant percentage. If you look at staffing at the labs, it means about 25%. This is one of the effects of the constant budgets.

It is safe to say then that the effort in photocatalysis and photoelectric chemistry I observed and was involved in four or five years ago has not kept pace with inflation but has actually decreased significantly in absolute terms.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement