Page 70

As pointed out last year, methanol is not widely available at the present time, but it could be distributed through existing service stations with modifications to the supply and distribution system, for example, to maintain product segregation, manage water, and replace any materials not compatible with methanol. Issues related to its corrosive properties and potential public health effects would require further investigation, and time would be required for fuel suppliers to make the facility modifications necessary to supply an additional fuel. In addition, new plants to manufacture methanol could be required depending on the extent of commercial use of this option, and methanol cost would be affected by natural gas cost. On the other hand, because methanol is used to make methyl tertiarybutyl ether (MTBE), if the use of MTBE in gasoline decreases, more methanol could become available without new plants.

It is clear from the foregoing discussion that the hydrogen required by fuel cells could be generated from gasoline, another petroleum liquid fuel, methanol, or natural gas. Some options call for onboard generation, and others, for generation in centralized facilities. Given the program goals of increasing efficiency and reducing fuel consumption, it will be important to make all-inclusive, “well to wheels” analyses (Weiss et al., 2000) to account for all factors associated with providing hydrogen.

The present DOE Hydrogen Program has a total of 77 projects that deal with hydrogen production, storage, and use for both stationary source applications and vehicular use (DOE, 2001).


Recommendation. High priority should be given to determining what fuel sulfur level will permit the preferred compression-ignition direct-injection (CIDI) engine and its after-treatment system to meet all regulatory and warranty requirements. An enhanced cooperative effort between the auto and petroleum industries should be undertaken to ensure that the fuels needed commercially will be available on a timely basis.

Recommendation. Given the breadth of the multiyear Fuels for Fuel Cells R&D Program, the go/no-go decision points should be closely followed to facilitate identification and timely development of the preferred options.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement