accumulation of knowledge in education and show that its progression is similar in many ways to other fields.

In Chapter 3 we provide a set of guiding principles that undergird all scientific endeavors. We argue that at its core, scientific inquiry in education is the same as in all other scientific disciplines and fields and provide examples from a range of fields to illustrate this common set of principles.

In Chapter 4 we describe how the unique set of features that characterize education shape the guiding principles of science in education research. We argue that it is this interaction between the principles of science and the features of education that makes scientific research in education specialized. We also describe some aspects of education research as a profession to further illuminate its character.

In Chapter 5, integrating our principles of science (Chapter 3) and the features of education (Chapter 4), we then take up the topic of the design of scientific education research. Recognizing that design must go hand in hand with the problem investigated, we examine education research design (and provide several examples) across three common types of research questions: What is happening? Is there a systematic effect? and How or why is it happening?

Finally, in Chapter 6 we offer a set of design principles for a federal education research agency charged with supporting the kind of scientific research in education we describe in this report. We argue that developing a strong scientific culture is the key to a successful agency and that all education stakeholders have a role to play in it.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement