B Committee Biographies

Peter Voorhees is the Frank C.Engelhart Professor in Materials Science and Engineering at Northwestern University. He received his B.S. in physics and Ph.D. in materials engineering from Rensselaer Polytechnic Institute. Upon graduation he joined the Metallurgy Division at the National Institute of Standards and Technology as a postdoctoral fellow and then stayed on as a staff member. In 1988 he was appointed as an associate professor in the Materials Science and Engineering Department at Northwestern University. Professor Voorhees has held visiting positions at the Institute for Theoretical Physics, University of California at Santa Barbara; Groupe de Physique des Solide, Universite Paris VII; Institut fur Angewandte Physik, ETH Zurich; Universitie de Montpellier II, France; and Institut fur Werkstofforschung, GKSS-Forschungszentrum. He has received the National Science Foundation Presidential Young Investigator Award, Acta Metallurgica et Materialia Outstanding Paper Award, McCormick School of Engineering and Applied Science Award for Teaching Excellence, ASM International Materials Science Division Research Award (Silver Medal), a National Science Foundation Creativity Extension and is a fellow of ASM International. He has published over 110 papers in the area of the thermodynamics and kinetics of phase transformations. Professor Voorhees’ research interests include coarsening phenomena, the morphological evolution of thin films during heteroepitaxy, and large-scale numerical simulations of microstructural evolution.

J.Iwan D.Alexander is a professor in the Department of Mechanical and Aerospace Engineering and is chief scientist for fluids, National Center for Microgravity Research on Fluids and Combustion (NCMR), Case Western Reserve University (CWRU). He joined NCMR and CWRU after spending more than 10 years at the Center for Microgravity and Materials Research at the University of Alabama, where he began research programs in fluids and transport problems in crystal growth (with an emphasis on microgravity-related problems) and computational and experimental fluid dynamics, most of which were involved with NASA microgravity activities. His current research areas include fluids and transport phenomena, surfaces and interfaces, and computational fluid dynamics. Dr. Alexander has served on the scientific staff at Carnegie Mellon University where he worked on elastic inclusion problems related to phase transitions in the solid state. He has also served as a visiting scientist at NASA’s Marshall Space Flight Center, where he became involved in assessing the effects of vibration and spacecraft disturbances on materials and fluids experiments that were to be conducted in low gravity. Dr. Alexander has no prior NRC committee experience.

Howard R.Baum, National Academy of Engineering (NAE), is a fellow of the National Institute of Standards and Technology. Dr. Baum has research interests in the fluid mechanics of fires, turbulent combustion, computational methods for fire phenomena, and smoke aerosol physics and transport. His research in fire-induced flows and turbulent combustion led to a U.S. Department of Commerce Silver Medal Award in 1981 and the Gold Medal Award in 1985. He was named Russell Severance Springer Visiting Professor at the University of California, Berkeley, in 1985 and was an invited lecturer at the Second International Symposium on Fire Safety Science in 1988. He received the Medal of Excellence from the International Association for Fire Safety Science in 1991 and 1999. Dr. Baum was a member of the U.S. delegation to the 1991 Japan-U.S. Heat Transfer Joint Seminar as primary participant and invited lecturer. He was awarded a Japan Society for the Promotion of Science fellowship for a 1994 visit to the University of Tokyo Institute of Industrial Science. Dr. Baum has published more than 100 papers and reports. His analysis of ventilation in containership holds is the technical basis of international standards for containership ventilation. He has served on NRC panels convened by the Naval Studies Board in 1986 and 1991 to consider Office of Naval Research (ONR) opportunities in solid and fluid mechanics, and a panel in 1987 to consider the status of nuclear winter research. Dr. Baum serves on the editorial boards of the journals Combustion and Flame and Combustion Theory and Modeling.

John L.Brash is a professor in the Department of Chemical Engineering at McMaster University and a member of the Brockhouse Institute for Materials Research. His research involves studies in



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 19
The Mission of Microgravity and Physical Sciences Research at NASA B Committee Biographies Peter Voorhees is the Frank C.Engelhart Professor in Materials Science and Engineering at Northwestern University. He received his B.S. in physics and Ph.D. in materials engineering from Rensselaer Polytechnic Institute. Upon graduation he joined the Metallurgy Division at the National Institute of Standards and Technology as a postdoctoral fellow and then stayed on as a staff member. In 1988 he was appointed as an associate professor in the Materials Science and Engineering Department at Northwestern University. Professor Voorhees has held visiting positions at the Institute for Theoretical Physics, University of California at Santa Barbara; Groupe de Physique des Solide, Universite Paris VII; Institut fur Angewandte Physik, ETH Zurich; Universitie de Montpellier II, France; and Institut fur Werkstofforschung, GKSS-Forschungszentrum. He has received the National Science Foundation Presidential Young Investigator Award, Acta Metallurgica et Materialia Outstanding Paper Award, McCormick School of Engineering and Applied Science Award for Teaching Excellence, ASM International Materials Science Division Research Award (Silver Medal), a National Science Foundation Creativity Extension and is a fellow of ASM International. He has published over 110 papers in the area of the thermodynamics and kinetics of phase transformations. Professor Voorhees’ research interests include coarsening phenomena, the morphological evolution of thin films during heteroepitaxy, and large-scale numerical simulations of microstructural evolution. J.Iwan D.Alexander is a professor in the Department of Mechanical and Aerospace Engineering and is chief scientist for fluids, National Center for Microgravity Research on Fluids and Combustion (NCMR), Case Western Reserve University (CWRU). He joined NCMR and CWRU after spending more than 10 years at the Center for Microgravity and Materials Research at the University of Alabama, where he began research programs in fluids and transport problems in crystal growth (with an emphasis on microgravity-related problems) and computational and experimental fluid dynamics, most of which were involved with NASA microgravity activities. His current research areas include fluids and transport phenomena, surfaces and interfaces, and computational fluid dynamics. Dr. Alexander has served on the scientific staff at Carnegie Mellon University where he worked on elastic inclusion problems related to phase transitions in the solid state. He has also served as a visiting scientist at NASA’s Marshall Space Flight Center, where he became involved in assessing the effects of vibration and spacecraft disturbances on materials and fluids experiments that were to be conducted in low gravity. Dr. Alexander has no prior NRC committee experience. Howard R.Baum, National Academy of Engineering (NAE), is a fellow of the National Institute of Standards and Technology. Dr. Baum has research interests in the fluid mechanics of fires, turbulent combustion, computational methods for fire phenomena, and smoke aerosol physics and transport. His research in fire-induced flows and turbulent combustion led to a U.S. Department of Commerce Silver Medal Award in 1981 and the Gold Medal Award in 1985. He was named Russell Severance Springer Visiting Professor at the University of California, Berkeley, in 1985 and was an invited lecturer at the Second International Symposium on Fire Safety Science in 1988. He received the Medal of Excellence from the International Association for Fire Safety Science in 1991 and 1999. Dr. Baum was a member of the U.S. delegation to the 1991 Japan-U.S. Heat Transfer Joint Seminar as primary participant and invited lecturer. He was awarded a Japan Society for the Promotion of Science fellowship for a 1994 visit to the University of Tokyo Institute of Industrial Science. Dr. Baum has published more than 100 papers and reports. His analysis of ventilation in containership holds is the technical basis of international standards for containership ventilation. He has served on NRC panels convened by the Naval Studies Board in 1986 and 1991 to consider Office of Naval Research (ONR) opportunities in solid and fluid mechanics, and a panel in 1987 to consider the status of nuclear winter research. Dr. Baum serves on the editorial boards of the journals Combustion and Flame and Combustion Theory and Modeling. John L.Brash is a professor in the Department of Chemical Engineering at McMaster University and a member of the Brockhouse Institute for Materials Research. His research involves studies in

OCR for page 19
The Mission of Microgravity and Physical Sciences Research at NASA biotechnology and biomaterials, polymerization and polymer characterization, and modification of surfaces for biotechnology and medical applications. A major goal is to understand the interactions of proteins and cells at the tissue-material interface, with particular emphasis on blood. Materials based on preventing the nonspecific adsorption of proteins and promoting the specific adsorption of targeted proteins are being developed. Professor Brash has been a member of several advisory committees of the Natural Sciences and Engineering Research Council (Canada), and was chair of the Chemical and Metallurgical Grants Review Committee. He has also served on committees of the Canadian Institutes of Health Research and the NIH. He received the Clemson Award for Basic Research of the U.S. Society for Biomaterials in 1994 and an honorary doctorate (docteur honoris causa) from the University of Paris (XIII) in 1996. He was awarded the title “University Professor” by McMaster University in 2001. Moses H.W.Chan, National Academy of Sciences (NAS), is the Evan Pugh Professor of Physics at Pennsylvania State University. His primary field of research involves the study of condensed matter. Dr. Chan is known for his innovative and precise experimental studies of phase transitions in quantum and classical fluids, especially in reduced dimensions, restricted geometries, and in the presence of impurities and disorder. He is the recipient of the Fritz London Prize, 1996, and was a Guggenheim fellow in 1987. Richard Hopkins retired in 1999 from the position of senior consultant, microelectronics, Northrop Grumman Science and Technology Center. Currently, he heads an electronic and optical materials consulting activity, Hopkins, Inc. Dr. Hopkins has 30 years of experience in materials and device research, including program management and senior line management positions, most recently as head of the Microelectronics Department at the Northrop Grumman Science and Technology Center. His technical expertise includes crystal growth methods for inorganic, organic, and metallic materials and the application of unique semiconductor, optical, and metal alloys to device fabrication. Dr. Hopkins has published 130 papers in refereed journals and holds 20 U.S. patents in materials and materials processing. He is president of the Eastern Region of the American Association for Crystal Growth and a fellow of ASM International. He previously served as a member of the NRC Task Group on Institutional Arrangements for Facilitating Research on the International Space Station. Michael Jaffe is a research professor with the New Jersey Institute of Technology in the Biomedical Engineering Department. He is also chief scientist for industrial programs and director of the Medical Device Concept Laboratory in the New Jersey Center for Biomaterials and an associate research professor at Rutgers University. His expertise is in innovative materials research such as biomimetics as well as Department of Defense (DOD) system applications. His work has focused on understanding the structure-property relationships of polymers and related materials, the application of biological paradigms to materials design, and the translation of new technology to commercial realty. Dr. Jaffe was the recipient of the 1995 Thomas Alva Edison Patent Award, presented by the Research and Development Council of New Jersey. He is a fellow of AAAS and a member of the NRC Committee on Materials Research for Defense-After-Next, the National Materials Advisory Board, and the U.S. National Committee for the International Union of Pure and Applied Chemistry. Bernard H.Kear, NAE, is State of New Jersey Professor of Materials Science and Technology at Rutgers University. For more than 35 years, Dr. Kear’s research interests have centered on the synthesis, processing, structure, and properties of inorganic solids for a broad range of structural applications. His current research is concerned with chemical processing of nanophase metals, ceramics, cermets, and composites, starting from aqueous solution or metal-organic precursors. Primary objectives of the research are to develop scalable processes for the production of nanostructured powders, thin films and multilayered structures, diffusion and overlay coatings, particle-dispersed and fiber-reinforced composites, and net-shape bulk materials. Dr. Kear’s previous work addressed the fundamental aspects of dislocation interactions, phase transformations, and solidification behavior in nickel-base superalloys. This work contributed to the successful development of directional solidification of single-crystal turbine blades, rapid solidification powder atomization, and laser surface treatments. From 1981 to 1986 he worked at Exxon, where his research activities were focused on developing methods for CVD (chemical vapor deposition) surface passivation treatments and for catalytic growth of carbon whiskers from

OCR for page 19
The Mission of Microgravity and Physical Sciences Research at NASA hydrocarbon precursors. Dr. Kear has published 220 technical papers, edited 9 books, and been granted 35 patents. He was chair of the National Materials Advisory Board from 1986 to 1989, and he has served on numerous NRC panels, including the Panel for Materials Science and Engineering and the Panel for a Review of ONR Research Opportunities in Materials Sciences. Jan D.Miller, NAE, is Ivor Thomas Professor of Metallurgical Engineering at the University of Utah. Dr. Miller’s research covers the areas of minerals processing, specializing in particulate systems, aqueous solution chemistry, colloid and surface chemistry, and environmental processing technology, hydrometallurgy, flotation surface chemistry, and colloid chemistry. He is widely noted for his contributions to the fundamental theory and practical technology of flotation, minerals processing, and hydrometallurgy. In 1991 he received the Robert H.Richards Award for his advancement of the art of minerals processing by “prolific innovation of concepts reflecting the highest quality spirit of an educator, engineer, inventor and dedicated researcher.” Dr. Miller served as principal investigator in 1998 for a project conducted at the Great Plains-Rocky Mountain Hazardous Substance Research Center and titled “Removal of Chlorinated Hydrocarbons from Contaminated Water Using Air-Sparged Hydrocyclone Technology.” He also served as conference co-chair for the Environmental Technology for Oil Pollution 2nd International Conference, “Analysis and Utilization of Oily Wastes.” Peter Staudhammer, NAE, is vice president for science and technology at TRW, Inc. As the company’s chief technical officer, Dr. Staudhammer is responsible for overseeing TRW’s acquisition, management, and application of technology. Prior to his current position, Dr. Staudhammer had served as vice president and director of the Center for Automotive Technology, which combines the technical strengths of TRW’s automotive and space and defense businesses. He also serves as a member of the company’s Management Committee. Dr. Staudhammer was one of the principal architects and the chief engineer of the Apollo Lunar Descent Engine. He also managed the development of space power and space instrument systems, including the Mars Viking Biology Instrument, atmospheric analysis instruments on Pioneer Venus, Earth observation instruments, and two ultraviolet spectrometers for the Voyager mission to Jupiter, Saturn, Uranus, and Neptune. Dr. Staudhammer subsequently managed TRW’s Central Research Staff, directing research in solid-state devices, space physics, high-energy lasers, and plasma physics. He has received achievement awards from NASA and from the Institute for the Advancement of Engineering. Viola Vogel is the director of the Center for Nanotechnology and an associate professor in the Department of Bioengineering at the University of Washington. After completing her graduate research at the Max-Planck Institute for Biophysical Chemistry in Goettingen, she received her Ph.D. in physics (1987) at Frankfurt University, followed by 2 years as a postdoctoral fellow at the University of California, Berkeley (1988–1990). She received the Otto-Hahn Medal from the Max-Planck Society (1988) and the NIH “First Award” (1993–1998), and she served on President Clinton’s Presidential Committee of Advisors in Science and Technology in the preparation of the Presidential Nanotechnology Initiative (1999). Dr. Vogel’s interests include molecular assembly processes at interfaces, single-molecule mechanics and spectroscopy, Langmuir-Blodgett films, biomineralization, biomaterials and cell signaling, and optical spectroscopy and microscopy. Dr. Vogel is the principal investigator of the NSF-funded Integrative Graduate Education Training Program in Nanotechnology at the University of Washington and an investigator on the NSF-Engineering Research Center project “University of Washington Engineered Biomaterials” (1996–2005) and the project “Integrated Biologically Active Microsystems” (2001–2006) funded by the National Institutes of Health—Centers for Excellence in Genomic Science and Technology.

OCR for page 19
The Mission of Microgravity and Physical Sciences Research at NASA Other Reports of the Space Studies Board “On the Next Generation Space Telescope” (2001) U.S. Astronomy and Astrophysics: Managing an Integrated Program (2001) Assessment of Mission Size Trade-offs for Earth and Space Science Missions (2000) “Assessment of NASA’s Office of Space Science Strategic Plan 2000” (2000) “Assessment of Scientific Aspects of the Triana Mission” (2000) “Continuing Assessment of Technology Development in NASA’s Office of Space Science” (2000) Ensuring the Climate Record from the NPP and NPOESS Meteorological Satellites (2000) Future Biotechnology Research on the International Space Station (2000) Issues in the Integration of Research and Operational Satellites for Climate Research: I. Science and Design (2000) Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies (2000) Preventing the Forward Contamination of Europa (2000) Review of NASA’s Biomedical Research Program (2000) Review of NASA’s Earth Science Enterprise Research Strategy for 2000–2010 (2000) The Role of Small Satellites in NASA and NOAA Earth Observation Programs (2000) “Scientific Assessment of Exploration of the Solar System—Science and Mission Strategy” (2000) “Scientific Assessment of Options for the Disposition of the Galileo Spacecraft” (2000) “Assessment of NASA’s Plans for Post-2002 Earth Observing Missions” (1999) Institutional Arrangements for Space Station Research (1999) Radiation and the International Space Station: Recommendations to Reduce Risk (1999) A Science Strategy for the Exploration of Europa (1999) A Scientific Rationale for Mobility in Planetary Environments (1999) Size Limits of Very Small Microorganisms: Proceedings of a Workshop (1999) U.S.-European-Japanese Workshop on Space Cooperation: Summary Report (1999) Assessment of Technology Development in NASA’s Office of Space Science (1998) Development and Application of Small Spaceborne Synthetic Aperture Radars (1998) Evaluating the Biological Potential in Samples Returned from Planetary Satellites and Small Solar System Bodies: Framework for Decision Making (1998) The Exploration of Near-Earth Objects (1998) Exploring the Trans-Neptunian Solar System (1998) Failed Stars and Super Planets: A Report Based on the January 1998 Workshop on Substellar-Mass Objects (1998) Ground-based Solar Research: An Assessment and Strategy for the Future (1998) Readiness for the Upcoming Solar Maximum (1998) Report of the Workshop on Biology-based Technology to Enhance Human Well-being and Function in Extended Space Exploration (1998) A Strategy for Research in Space Biology and Medicine in the New Century (1998) Supporting Research and Data Analysis in NASA’s Science Programs: Engines for Innovation and Synthesis (1998) U.S.-European Collaboration in Space Science (1998) Copies of these reports are available free of charge from: Space Studies Board National Research Council 2101 Constitution Avenue, NW Washington, DC 20418 (202) 334–3477 ssb@nas.edu www.nationalacademies.org/ssb/ssb.html