ciency, and the explanation and understanding of the surface physics are incomplete.

MTC Electrode Materials

The rationale for the MTC configuration depends not only on the presumed low manufacturing cost using integrated circuit manufacturing techniques, but also on very substantial advances in durable electrode work function properties. The search for such materials has been thoughtfully and extensively pursued in a number of laboratories over the years without the constraint of compatibility with integrated circuit fabrication methods and materials. Even if low work function electrode materials can be fabricated inexpensively and made compatible with the integrated circuit industry fabrication methods used to form the main structure of the MTCs, the same electrode materials should also be helpful in forming more conventional thermionic fuel elements. In the case of conventional thermionic fuel elements (TFEs), the space charge limitations of higher gap spacing are compensated for by the use of Cs vapor. Therefore, even if an MTC device became practical, the gains in low work function materials would probably allow conventional TFEs to outperform the MTC device.

Competing Technologies

Even if it is assumed that the several major technical hurdles identified above can be overcome, very small scale (on the scale of a chip or radioisotope heater unit) MTCs still face stiff competition from thermal electric generators. At 1 to 100 watts, MTCs also face strong competition from AMTEC and free-piston Stirling, which appear to have fewer material problems at the temperature levels proposed for the Sandia converters.

Ultimately, the experimental data from the MTC program do not support the theoretical predictions. Not only are postulated low work function emitters not yet functional, they also are not expected to be so in the near future. Finally, while it is assumed that integrated circuit fabrication methods will lead to low cost production, the fact remains that fabrication of stable, small gap converters has not been demonstrated for near-term experiments, and these devices do not have the right characteristics for long-term, low cost production given material constraints such as directional etching, compatible layer chemistry, and so on.

Recommendation 6. The sponsoring agency should discontinue the microminiature thermionic converter (MTC) program, the close-spaced vacuum converter tasks, the oxygenation effects research, and all current theory and theory validation work.

REFERENCES

Begg, Lester L. 1998. “In-Core Thermionic Technology Development Program,” Paper IECEC-98–402, Proceedings of the 33rd Intersociety Engineering Conference on Energy Conversion, American Nuclear Society, Albuquerque, N.Mex., August 2–6, 1998.


DOE (Department of Energy). 1992. Report of the United States Space Nuclear Power and Propulsion Team: An Examination of the Space Nuclear Power and Propulsion Activities of the Commonwealth of Independent States. DOE, Washington, D.C., October 6.

Drake, T.R. 1998. “DoD’s Advanced Thermionics Program: An Overview,” Paper IECEC-98–404, Proceedings of the 33rd Intersociety Engineering Conference on Energy Conversion, American Nuclear Society, Albuquerque, N.Mex., August 2–6, 1998.


Gontar, A.S., et al. 1996. “Fuel Elements of Thermionic Converters,” Special Issue on Technology, Journal of the Franklin Institute 333A:(2–6).


Hatsopoulos, G.N., and J.Kaye. 1958a. “Analysis and Experimental Results of a Diode Configuration of a Novel Thermo Electron Engine,” Proc. I.R.E. 46(9):1574–1579.

Hatsopoulos, G.N., and J.Kaye. 1958b. “Measured Thermal Efficiencies of a Diode Configuration of a Thermo Electron Engine,” Journal of Applied Physics 29(7):1124–1125.


King, D.B., J.R.Luke, and F.J.Wyant. 1999. “Results from the Microminiature Thermionic Converter Demonstration Testing Program,” Proceedings of the Space Technology and Applications International Forum, CP458. American Institute of Physics, Melville, N.Y.


Rasor, N.S. 1998. “The Important Effect of Electron Reflection on Thermionic Converter Performance,” Paper 211, Proceedings of the 33rd Intersociety Engineering Conference on Energy Conversion, American Nuclear Society, Albuquerque, N.Mex., August 2–6, 1998.

Rightley, Gina. 1998a. “Summary Results of MTC Diode Studies,” Sandia National Laboratories memo, October 13.

Rightley, Gina. 1998b. “Summary Results of RHU/MTC System Studies,” Sandia National Laboratories memo, September 29.


Zavadil, K.R., J.H.Ruffner, and D.B.King. 1999. “Characterization of Sputter Deposited Thin Film Scandate Cathodes for Miniaturized Thermionic Converter Applications,” Proceedings of the Space Technology and Applications International Forum, CP458. American Institute of Physics, Melville, N.Y.

BIBLIOGRAPHY

Marshall, A.C. 1998. “An Advanced Thermionic Theory for Development of High Performance Thermionic Energy Conversion Diodes,” Paper 212, Proceedings of the 33rd Intersociety Engineering Conference on Energy Conversion, American Nuclear Society, Albuquerque, N.Mex., August 2–6, 1998.

Marshall, A.C. 1998. “An Advanced Thermionic Theory: Recent Developments,” Proceedings of the Space Technology and Applications International Forum. American Institute of Physics, Melville, N.Y.

Marshall, A.C. 1998. “An Equation for Thermionic Currents in Vacuum Energy Conversion Diodes,” Applied Physics Letters 73:2971–2973.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement