those students who have not had access to advanced tools may be at a decided disadvantage in a technology-rich classroom.

The changing approaches to education outlined in Table 1-1 engage students in active learning, often in collaborative groups. Although one might think that students would be eager to respond to these “learner-centered” forms of education, not all students are. Shneiderman noted that every semester, he encounters one or two students who are reluctant to participate in group projects. At UHD, mathematics instructors have found that some students, who either dropped or failed the more traditional sections of introductory algebra, complain that “I’ve had this course before, and this is not the way it’s supposed to be done” (Millar et al., 2001).

Although workshop participants noted that all of these cultural and institutional constraints currently slow widespread transformation of undergraduate education, these constraints could possibly be reversed in the future. For example, high-quality, interactive software that supports individualized instruction and learning of SME&T disciplines might be widely available. In this case, a single professor could support learning among a large, lecture-sized group of students, without spending hours with each student. In such a future, faculty and administrators would likely welcome the use of IT and the time savings that would result. The next chapter summarizes some participants’ views about the future of undergraduate education, including the role of IT. The chapter also describes participants’ suggestions about ways to use IT more effectively and capture its full potential to enhance learning among SME&T students.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement