National Academies Press: OpenBook
« Previous: Front Matter
Page 1
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×

Executive Summary

Motor vehicle rollovers involving passenger cars, vans, pickup trucks, and sport utility vehicles (SUVs) result in approximately 10,000 deaths and 27,000 serious injuries each year in the United States. Although rollover occurs in fewer than 1 in 10 tow-away crashes involving light vehicles,1 these crashes account for almost one-third of light-vehicle occupant fatalities.

The National Highway Traffic Safety Administration (NHTSA) has developed a five-star rating system to inform consumers about the rollover resistance of passenger cars and light multipurpose passenger vehicles and trucks. This system has been incorporated into the New Car Assessment Program. The ratings derive from a correlation between measured values of static stability factor (SSF)2 for a range of vehicles and corresponding rollover rates determined from single-vehicle crash data. Among the 2001 model vehicles currently rated by NHTSA for rollover resistance, most SUVs received two- or three-star ratings, while most passenger cars received four-or five-star ratings (five stars indicates the best vehicle performance and one star the worst).

Congress requested this study of NHTSA’s rollover resistance rating system. Public Law 106-346 required the U.S. Department of Transportation to fund a study “on whether the static stability factor is a scientifically valid measurement that presents practical, useful information to the public, including a comparison of the static stability factor test versus a test with rollover metrics based on dynamic driving conditions that may induce rollover events.” Particular emphasis was to be placed on the potential role of consumer information on vehicle characteristics, in particular SSF, in achieving a reduction in the rollover crash rate and in related deaths and injuries. In response to a request from NHTSA, the Transportation Research Board of the National Research Council established a 13-member committee to conduct the study.3,4

1

Light vehicles are defined by the National Highway Traffic Safety Administration (NHTSA) as the combination of (1) passenger cars and (2) multipurpose passenger vehicles under 10,000 pounds gross vehicle weight rating.

2

SSF is defined as the vehicle’s track width, T, divided by twice its center of gravity height, H; i.e., SSF = T/2H.

3

The committee met four times between April and October 2001, gathering information from a range of interested parties. Members of the committee also visited the Consumers Union Vehicle Test Facility in Connecticut, as well as Ford, General Motors, and DaimlerChrysler facilities in the Detroit area. In addition, the committee reviewed information on motor vehicle rollover from the technical literature, the Internet, NHTSA dockets, and the popular press.

4

Although not specifically asked to do so by Congress, the committee has included in this report comments on the relevance of electronic stability control systems to rollover in response to a request from NHTSA.

Page 2
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×

BACKGROUND

Automobile crashes are complex events involving three main contributing factors and their interactions: the driver, the driving environment (e.g., weather and road conditions, time of day), and the vehicle. The crash data files used by NHTSA to develop its rollover resistance rating system5 include information characterizing the driver and road conditions associated with the crash. This information defines different crash scenarios that can be associated with markedly different risks of rollover. For example, scenarios involving young drivers (under age 25) or those who have been drinking carry a relatively high risk of rollover, as do scenarios involving inclement weather or curves in the road. The important question addressed by this report is the extent to which the vehicle—and in particular its SSF value—affects the risk of rollover for different drivers and driving environments.

As noted, in accordance with the requirements of Public Law 106-346, this study focuses on the potential for reducing the rollover crash rate, as well as resulting deaths and injuries, by providing consumer information related to vehicle characteristics, specifically SSF. It is important to remember that other approaches may be as or more effective. For example, a change in driver behavior leading to increased seat belt use also could result in a reduction in rollover-related deaths and injuries; NHTSA estimates that belted occupants are about 75 percent less likely than unbelted occupants to be killed in a rollover crash. Furthermore, it is essential to ensure that changes in vehicle design leading to a reduction in one contributor to overall vehicle risk—such as rollover—do not compromise other aspects of vehicle safety. Many complex risk trade-offs need to be considered in pursuing the ultimate goal of improved road safety.

FINDINGS

The committee’s findings regarding SSF and NHTSA’s star ratings for rollover resistance are presented below.

Static Stability Factor

NHTSA, vehicle manufacturers, and others have used various static measures and driving maneuvers to characterize the rollover behavior of vehicles. In developing its consumer information on rollover, NHTSA selected SSF as an indicator of rollover propensity in single-vehicle crashes. This decision resulted in part from the ability to measure SSF directly for vehicles, and in part from

5

The rating system is based on analyses of single-vehicle crashes only.

Page 3
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×

the statistical correlation between observed crash outcomes (rollover or no rollover) and SSF.

In developing its rating system, NHTSA undertook statistical studies to investigate the relationship between measured values of SSF for a range of vehicles and corresponding rollover rates determined from crash data. The agency reviewed crash frequencies and rollover rates, and used data from six states, selected as representative of national trends, for regression analyses using an exponential statistical model.6 At the request of the committee, NHTSA conducted additional analyses of these crash data using a logit statistical model. The agency computed separate rollover curves and associated confidence bands for different crash scenarios.7 These curves indicate that an increase in SSF reduces the probability of rollover in the event of a single-vehicle crash, although this trend is less pronounced for lower-risk scenarios.

Finding 1

Through a rigid-body model, SSF relates a vehicle’s track width, T, and center of gravity height, H, to a clearly defined level of the sustained lateral acceleration that will result in the vehicle’s rolling over. The rigid-body model is based on the laws of physics and captures important vehicle characteristics related to rollover.

Finding 2

Analysis of crash data reveals that, for higher-risk scenarios, SSF correlates significantly with a vehicle’s involvement in single-vehicle rollovers, although driver behavior and driving environment also contribute. For these scenarios, the statistical trends in crash data and the underlying physics of rollover provide consistent insight: an increase in SSF reduces the likelihood of rollover.

Finding 3

Metrics derived from dynamic testing are needed to complement static measures, such as SSF, by providing information about vehicle handling characteristics that are important in determining whether a driver can avoid conditions leading to rollover.

6

NHTSA refers to this as a linear model.

7

In the present context, a crash scenario is defined by a unique combination of driver and environmental variables likely to affect the outcome of the crash. Such scenarios can be ordered by their observed frequency of rollovers. When the frequency is low, the scenarios are said to be low risk, and when the frequency is high, the scenarios are high risk. An example of a high-risk scenario would be one involving a male driver who had been drinking and was negotiating a curve on a road with a speed limit of 50 mph or greater.

Page 4
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×

NHTSA’s Star Ratings for Rollover Resistance

NHTSA derived its star ratings for rollover resistance using an exponential statistical model and regression analysis correlating SSF with crash data. The agency based the ratings on an average rollover curve calculated using a dataset comprising single-vehicle crash data from six states. This average rollover curve gives the rollover risk—defined as the probability of rollover in the event of a single-vehicle crash—for each value of SSF, assuming an average scenario. Data on driver and environmental variables were used in estimating the curve. When developing its ratings, NHTSA did not consider the uncertainty in the average rollover propensity curve as reflected in the associated confidence bands.

NHTSA partitioned the average rollover curve into five regions, based on the rollover probability in the event of a single-vehicle crash. If a vehicle’s SSF corresponds to a rollover probability range of 0–10 percent, as defined by the average rollover curve, the vehicle is assigned five stars. If its SSF corresponds to a rollover probability range of 10–20 percent, it is assigned four stars, and so on. If the vehicle’s SSF indicates that—according to the average rollover curve—it has a rollover probability of greater than 40 percent in the event of a single-vehicle crash, it is assigned a one-star rollover resistance rating. Rollover curves generated from crash data represent an average over many different vehicle makes and models. Therefore, a data point representing the probability of rollover in a single-vehicle crash for a given vehicle make or model may fall above or below the curve.

NHTSA used two series of consumer focus group studies to develop and evaluate its star rating system. The first series addressed rollover and the effects of information about rollover on consumers. In the second series, consumer awareness and understanding of rollover problems were explored, and consumer comprehension of two potential texts aimed at explaining the agency’s rollover resistance ratings was evaluated. The rollover information on NHTSA’s website has attracted interest, as indicated by site use statistics. However, no empirical data on consumers’ use of the ratings were available to the committee.

Finding 4

NHTSA’s implementation of an exponential statistical model lacks the confidence levels needed to permit discrimination among vehicles within a vehicle class8 with regard to differences in rollover risk.

8

Vehicles are often grouped into classes, notably passenger cars, SUVs, light trucks, and vans.

Page 5
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Finding 5

The relationship between rollover risk and SSF can be estimated accurately with available crash data and software using a logit model. For the analysis of rollover crash data, this model is more appropriate than an exponential model.

Finding 6

The approximation of the rollover curve with five discrete levels—corresponding to the five rating categories—is coarse and does not adequately convey the information provided by the available crash data, particularly at lower SSF values, where the rollover curve is relatively steep.

Finding 7

There is a gap between recommended practices for the development of safety information and NHTSA’s current process for identifying and meeting consumer needs for such information. In particular,

  • The focus group studies used to develop the star rating system were limited in scope.

  • The agency has not undertaken empirical studies to evaluate consumers’ use of the rollover resistance rating system in making vehicle safety judgments or purchase decisions.

SUMMARY FINDINGS

The committee has synthesized its findings in the areas of vehicle dynamics, statistics and data analysis, and consumer information into two summary findings that respond to the congressional mandate for this study.

Summary Finding 1

SSF captures important vehicle characteristics related to rollover propensity and is strongly correlated with the outcome of actual crashes (rollover versus no rollover), as demonstrated by statistical analyses of crash data. Data from dynamic testing could provide important information on vehicle crash-avoidance metrics that would complement static measures.

Summary Finding 2

NHTSA’s star ratings for rollover resistance are likely to be of limited use in presenting practical information to the public because

Page 6
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
  • There were shortcomings in the statistical methodology used to derive the average rollover curve.

  • The approximation of the rollover curve by five discrete rating categories is coarse and does not adequately convey the degree of resolution among vehicles provided by available crash data.

  • The limited procedures used by NHTSA to develop and evaluate the star rating system do not demonstrate with reasonable confidence the likely effectiveness of the system.

RECOMMENDATIONS FOR A FUTURE APPROACH

The committee concludes that consumer information on motor vehicle rollover can assist the public in choosing safer cars and encourage manufacturers to investigate ways of making vehicles less susceptible to rollover. To be comprehensive, such information needs to capture

  • The results of dynamic tests that assess a vehicle’s control and handling characteristics, and

  • Information from static measures indicative of a vehicle’s rollover propensity.

In accordance with the requirements of the Transportation Recall Enhancement, Accountability, and Documentation (TREAD) Act (Public Law 106-414), NHTSA is investigating several driving maneuver tests for rollover resistance. Challenges remain in developing the requisite dynamic tests, together with related consumer information that is technically accurate, as well as practical and useful to the public. Nevertheless, the committee has not identified any insurmountable engineering barriers to the development of a representative dynamic test (or tests) that would differentiate meaningfully among vehicles. Similarly, the development of consumer information based on static measures and dynamic tests appears feasible, particularly if NHTSA takes advantage of recommended development practices and proven techniques for communicating risk-based information to consumers.

Despite the absence of technical barriers to providing more comprehensive consumer information on rollover, the protracted history of NHTSA’s rulemaking initiatives on rollover suggests that the agency may encounter difficulties in obtaining support for its actions from all the major stakeholders. Furthermore, vehicle manufacturers, consumer groups, and others involved in vehicle testing are likely to incur additional costs when NHTSA introduces dynamic testing related to rollover. For these reasons, the committee concludes that consumer information on rollover that captures both static measures and dynamic test results probably will not be available in the near future.

The current rollover resistance ratings are likely to be of limited use to the public because of the way in which information on SSF is delivered. However,

Page 7
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×

SSF may form a reasonable initial basis for developing consumer information on rollover until additional measures based on both static metrics and dynamic testing become available.

Recommendation 1

NHTSA should vigorously pursue its ongoing research on driving maneuver tests for rollover resistance, mandated under the TREAD Act, with the objective of developing one or more dynamic tests that can be used to assess transient vehicle behavior leading to rollover.

Recommendation 2

In the longer term, NHTSA should develop revised consumer information on rollover that incorporates the results of one or more dynamic tests on transient vehicle behavior to complement the information from static measures, such as SSF.

Recommendation 3

NHTSA should investigate alternative options for communicating information to the public on SSF and its relationship to rollover. In developing revised consumer information, NHTSA should

  • Use a logit model as a starting point for analysis of the relationship between rollover risk and SSF.

  • Consider a higher-resolution representation of the relationship between rollover risk and SSF than is provided by the current five-star rating system.

  • Continue to investigate presentation metrics other than stars.

  • Provide consumers with more information placing rollover risk in the broader context of motor vehicle safety.

Page 8
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×

This page intentionally left blank.

Page 1
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Page 1
Page 2
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Page 2
Page 3
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Page 3
Page 4
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Page 4
Page 5
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Page 5
Page 6
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Page 6
Page 7
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Page 7
Page 8
Suggested Citation:"Executive Summary." Transportation Research Board. 2002. An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265. Washington, DC: The National Academies Press. doi: 10.17226/10308.
×
Page 8
Next: Chapter 1: Introduction »
An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance: Special Report 265 Get This Book
×
MyNAP members save 10% online.
Login or Register to save!

TRB Special Report 265 - An Assessment of the National Highway Traffic Safety Administration's Rating System for Rollover Resistance finds that the static stability factor is a useful indicator of a vehicle's propensity to roll over, but that U.S. government ratings for new cars, light trucks, and sport utility vehicles do not adequately reflect differences in rollover resistance shown by available crash data. According to the report, the five-star system should be revised to allow better discrimination among vehicles and incorporate results from road tests that measure vehicle control and handling characteristics.

Following the National Highway Traffic Safety Administration's (NHTSA's) issuance of vehicle ratings to inform consumers about rollover risk, Congress requested a TRB study to evaluate the appropriateness of the rating system. Motor vehicle rollovers involving passenger cars, vans, pickup trucks, and sport utility vehicles result in approximately 10,000 deaths and 27,000 serious injuries each year in the United States. NHTSA developed a five-star rating system to inform consumers about the rollover resistance of passenger cars and light-duty passenger vehicle trucks.

After thoroughly evaluating NHTSA's development of the rating system, the committee that conducted this study concurred with the agency's reliance on a static measure of vehicle stability but pointed out some inadequacies of the statistical model used to relate this static measure to rollover risk. Alternative statistical approaches would provide a better approximation of risk. The rating system itself was found wanting. The procedures used to develop and test the ratings with consumers through focus groups did not provide credible evidence that consumers understood the message about the actual risk associated with a given vehicle. By being limited to only five levels, the system also discarded valuable information. The data developed by NHTSA could be refined to enable consumers to discriminate better among vehicle models with regard to their rollover experience.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!