National Academies Press: OpenBook
« Previous: 3. Challenges in Predictability Science and Limits-to-Prediction for Hydrologic Systems
Suggested Citation:"4. Conclusions." National Research Council. 2002. Report of a Workshop on Predictability and Limits-To-Prediction in Hydrologic Systems. Washington, DC: The National Academies Press. doi: 10.17226/10337.
×

4
Conclusions

The workshop presentations and discussions confirmed the importance of developing an understanding to the limits of hydrologic prediction. Discussions during the workshop and written contributions by the participants resulted in defining milestones of progress in advancing predictability research and understanding limits-to-prediction in the hydrologic sciences. These milestones are valuable for any research initiative because they define the important and critical research directions. Additionally, they will allow the development of a timeframe for progress by the research program. In addition, such objectives are benchmarks for tracking the maturation of a research area, the vision for advancement of the area, and the metrics for progress.

While it is recognized that USGCRP agencies have focused research activities on forecasting and prediction, the workshop participants indicated that USGCRP agencies should establish programs to investigate the limits to predictability of the wider range of hydrologic variables. For example, current programs tend to focus on meteorological prediction, while understanding the limits-of-prediction for groundwater contaminant transport or ecosystem dynamics have received less attention. Yet these systems are of critical importance to the nation. In fact, the NRC report on environmental grand challenges (NRC, 2001b) included improved hydrologic forecasting among five priorities in environmental science.

Suggested Citation:"4. Conclusions." National Research Council. 2002. Report of a Workshop on Predictability and Limits-To-Prediction in Hydrologic Systems. Washington, DC: The National Academies Press. doi: 10.17226/10337.
×

The workshop identified the need for furthering the understanding between predictability and sub-grid-scale processes. Recent research suggests that increased resolution of distributed hydrological models has not necessarily lead to improved predictions due to the fact that the lack of understanding and modeling of subgrid scale processes is not compensated by improved resolution data sets. The increased availability of high-resolution data sets (e.g., data from space-borne sensors) allows for research programs that address the relationship among distributed data sets, modeling hydrological processes across a range of spatial and temporal scales, and predictability.

The improved availability of data holds the promise of improved predictions, regardless of the concerns about understanding small-scale processes raised above. Workshop deliberations pointed to research aimed at determining how the data can be best utilized to maximize the predictability from models. Data assimilation, where observations are merged with models, is well developed in the meteorology community. Research into data assimilation in the other areas of hydrologic and environmental sciences may be used to demonstrate how models can have synergy with measurements and to evaluate the predictability benefits from such approaches.

Multi-agency joint projects need to be devised to maximize the return for the resource investment and to engage a larger cross-section of the research and user communities. The fundamental issues regarding predictability and predictions are not restricted to a few variables such as precipitation or air temperature, but are pervasive across hydrologic and environmental sciences. One of the important issues identified both at the workshop and in numerous previous NRC reports is the need to reverse the degradation of existing monitoring systems where it can be demonstrated that the collection of consistent measurements and observations can lead to improved predictions of operational importance.

The key to success in research programs on predictability in hydrologic systems and in operational prediction programs is to develop strong linkages between research institutions and operational activities. Neither can fully realize their potential without recognizing their mutual synergies.

Suggested Citation:"4. Conclusions." National Research Council. 2002. Report of a Workshop on Predictability and Limits-To-Prediction in Hydrologic Systems. Washington, DC: The National Academies Press. doi: 10.17226/10337.
×

The workshop findings are consistent with those from an earlier COHS report on USGCRP (NRC, 1999) and the USGCRP Water Cycle Initiative Science Plan (Hornberger et al., 2001). These reports collectively define needed research that potentially has wide-spread and deep impacts on society by the incorporation of improved understanding of predictability into the operational arena.

In conclusion, discussions during the workshop and written contributions by the participants resulted in the definition of five research challenges and associated milestones, as presented in the previous section, that mark the path towards progress in advancing predictability research and understanding limits-to-prediction in the hydrologic sciences. The definition of such milestones is valuable for a research initiative because these milestones describe potential priority areas for research. More importantly, they define, in specific terms, where the community wants to see itself at different times along this path. Such milestones also provide benchmarks for tracking the maturation of a research area by identifying a vision for advancement and ensuring that the community has metrics for progress.

Suggested Citation:"4. Conclusions." National Research Council. 2002. Report of a Workshop on Predictability and Limits-To-Prediction in Hydrologic Systems. Washington, DC: The National Academies Press. doi: 10.17226/10337.
×
Page 30
Suggested Citation:"4. Conclusions." National Research Council. 2002. Report of a Workshop on Predictability and Limits-To-Prediction in Hydrologic Systems. Washington, DC: The National Academies Press. doi: 10.17226/10337.
×
Page 31
Suggested Citation:"4. Conclusions." National Research Council. 2002. Report of a Workshop on Predictability and Limits-To-Prediction in Hydrologic Systems. Washington, DC: The National Academies Press. doi: 10.17226/10337.
×
Page 32
Next: References »
Report of a Workshop on Predictability and Limits-To-Prediction in Hydrologic Systems Get This Book
×
Buy Paperback | $46.00 Buy Ebook | $36.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The Committee on Hydrologic Science (COHS) of the National Research Council (NRC) is engaged in studying the priorities and future strategies for hydrologic science. In order to involve a broad community representation, COHS is organizing workshops on priority topics in hydrologic science. These efforts will culminate in reports from the NRC on the individual workshops as well as a synthesis report on strategic directions in hydrologic science. The first workshop-Predictability and Limits-to-Prediction in Hydrologic Systems-was held at the National Center for Atmospheric Research in Boulder, Colorado, September 21-22, 2000. Fourteen technical presentations covered basic research and understanding, model formulations and behavior, observing strategies, and transition to operational predictions.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!