BOX 2-1 Example of Delays in Runway Expansion Due in Part to Aviation Noise

In the early 1970s, MASSPort, the public authority that manages Logan International Airport in Boston, attempted to add a runway, runway 33R/15L, to parallel existing jet runway 33L/15R. Construction started, but members of the community blocked the bulldozers and stopped the work. As a result, MASSPort was enjoined by the court from constructing any more runways. The injunction is still in effect today. As a result of the incomplete construction effort, runway 33R/15L exists, but it is only 2,557 feet long—too short by far to handle large jet aircraft.

From 1975 to 2000, Logan’s total operations increased from about 300,000 to 500,000 takeoffs and landings per year. Within the past 2 years, MASSPort proposed a new, 5,000-foot runway, runway 14/32, to be located at the southern edge of the airport. This runway would service smaller aircraft (commuter and light aircraft), which currently constitute 40 to 50 percent of Logan’s operations. It would also be unidirectional in that the only operations permitted would be landings on 32 and departures on 14. The local community has also opposed construction of this runway.

SOURCE: Personal communication, Nancy Timmerman, Manager, Noise Monitoring Systems, Massachusetts Port Authority, February 2001.

BOX 2-2 Examples of Flight Delays and Cancellations Directly Caused by Aircraft NoiseRestrictions

January 5, 2001. Delta Air Lines Flight 1285 left John F. Kennedy International Airport in New York City with 98 passengers bound for Ronald Reagan Washington National Airport, in Washington, D.C., and 31 passengers bound for Atlanta. Flight 1285 was late departing New York because weather conditions required de-icing prior to takeoff. As a result, the flight was unable to reach Washington, D.C., until after the noise curfew at National Airport. Therefore, Flight 1285 was diverted to Washington Dulles International Airport, where an additional 32 passengers boarded the plane to go to Atlanta. Meanwhile, 33 passengers at National Airport who had been booked for the leg to Atlanta had to make other arrangements.

January 7, 2001. Delta Flight 198 was scheduled for a night flight from San Diego to Cincinnati with 38 passengers. The flight crew was on another flight that was late arriving in San Diego. As a result, Flight 198 had to be canceled because it was unable to take off prior to the noise curfew at San Diego International Airport.

January 11, 2001. Delta Flight 1670 was scheduled to fly from San Diego to Dallas/Fort Worth. The aircraft needed for this flight should have arrived in San Diego the previous evening as Flight 2115 from Salt Lake City. That flight, however, and its 58 passengers had been diverted to Los Angeles, apparently because of the noise curfew (coupled with “field conditions”) at San Diego International Airport. Delta Air Lines used a bus to get the passengers on Flight 2115 to San Diego after they deplaned at Los Angeles, and Flight 1670 was canceled on the following morning because no aircraft were available in San Diego.

acoustic liner technology, and other engineering changes being gradually introduced. The development of many of these improvements was supported by NASA research programs. Between 1970 and 2000, average aircraft capacity increased from 113 seats to 158 seats, and the average number of engines per aircraft dropped from 3.2 to 2.3 (averages are weighted by distance traveled by different aircraft). Larger aircraft with fewer engines require engines with more thrust, which produce more noise, and this has offset some of the technological gains. The differences between the noise levels of the various aircraft shown in Figure 2-1 arise from differences in technology level, overall size and weight, and number of engines. Variations due to size and/or weight and number of engines are accounted for in the certification regulations: heavier aircraft with more engines are generally allowed higher noise levels.

Figure 2-1 indicates that the pace of technological change has been roughly constant—an improvement of about 3 dB per decade—over the past 40 years. ICAO’s Committee on Aviation Environmental Protection has recently recom-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement