Page 24

Over the last decade, a number of studies have identified and recommended new directions—actually expanded directions more than replacement directions—for forestry education and research (American Forest Congress, 1996; Ginger et al., 1999; Ellefson and Ek, 1996; Committee of Scientists, 1999). Much of the knowledge base needed to address forest-related issues in the early decades of the 21st century has been identified and enumerated in these studies. In addition, advice solicited from experts for the present report revealed that the following topics have the highest priority.

Foundation forestry education and research:

  • Biology, ecology, and silviculture

  • Forest genetics

  • Forest management, economics, and policy

  • Wood and materials science

Emerging forestry education and research:

  • Human and natural resource interactions

  • Ecosystem function, health, and management

  • Forest systems on various scales of space and time

  • Forest monitoring, analysis, and adaptive management

  • Forest biotechnology

The division into priorities among foundation and emerging forestry education and research reinforces the needs for traditional education and research functions, but in a new context, and for extending our knowledge to relatively new disciplines, which are rapidly becoming more important. Foundation programs are required as the base on which new research will be built. Furthermore, the basic programs and applied forestry sciences are becoming far better grounded and supported by advances in the emerging fields. It is essential that decision-makers in both the public and the private sectors understand and support these dual forestry education and research needs.

Basic programs and basic science (especially foundation research) have made exceptional advances in rigor, depth of understanding, and potential for enhanced sustainable forest management in the last decade. Basic biotechnology, genomic science, tree breeding, and forest physiology promise to allow us to triple or quintuple rates of forest growth per unit area and to impart disease and insect resistance on intensively managed lands. Foundation research also can allow us to select trees that have desirable wood properties and to manipulate their cell and wood structure (genetics) and environment to produce more uniform wood with targeted wood properties for industrial applications. Foundation genetics education and research allow us to examine questions of genetic diversity at the cell, stand, or landscape level. Sustainable forest management promises to focus efforts on extending traditional sustained-yield forestry to multiple scales, periods, goods and services, and forest interest groups; this will increase our



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement