ENGINEERING AND ENVIRONMENTAL CHALLENGES

TECHNICAL SYMPOSIUM ON EARTH SYSTEMS ENGINEERING

National Academy of Engineering Annual Meeting

October 24, 2000

NATIONAL ACADEMY PRESS
Washington, D.C.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering ENGINEERING AND ENVIRONMENTAL CHALLENGES TECHNICAL SYMPOSIUM ON EARTH SYSTEMS ENGINEERING National Academy of Engineering Annual Meeting October 24, 2000 NATIONAL ACADEMY PRESS Washington, D.C.

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering NATIONAL ACADEMY PRESS 2101 Constitution Avenue, N.W. Washington, D.C. 20418 The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the election of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The interpretations and conclusions expressed in the papers are those of the authors and are not presented as the views of the council, officers, or staff of the National Academy of Engineering. International Standard Book Number 0-309-08415-6 Copies of this report are available from National Academy Press, 2101 Constitution Avenue, N.W., Lockbox 285, Washington, D.C. 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu Printed in the United States of America Copyright 2002 by the National Academies. All rights reserved.

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering THE NATIONAL ACADEMIES National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chairman and vice chairman, respectively, of the National Research Council.

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering This page intentionally left blank.

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering Preface Every year the National Academy of Engineering (NAE) hosts a public symposium as a part of its annual meeting to encourage discussion among NAE members and the public on topics crucial to the nation’s technological welfare. The topic for the symposium at the 2000 Annual Meeting was Earth systems engineering (ESE)—the focus of the NAE’s activities on technology and the environment. ESE is an emerging multidisciplinary area based on a holistic view of the interactions between natural and human systems. ESE addresses global, complex, multiscale, multicycle phenomena, such as climate change, as well as problems of global importance, such as urban design. The goal of ESE is to improve our understanding of these complex systems and develop tools to support technically sound, ethical decisions. ESE attempts to frame problems in a way that maintains important connections yet enables the development of effective solutions. The twentieth century was marked by unparalleled advances in technology and the development of world resources, as well as unparalleled growth in the human population. Human activities have left their mark everywhere on Earth, and in many places humanity has significantly reshaped natural systems. Our ability to effect changes through technology has grown faster than our understanding of the technical, social, and ethical implications of those changes. Thus “success” has sometimes come at a cost—often unexpected—to the environment, biodiversity, and human society. The human population has grown to the point that the Earth can no longer absorb and compensate for changes caused by human activities. As our impact on the planet increases, engineers and policy makers must become more aware of the

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering multiple time scales and diversity of environments and populations affected by their actions. As the human population approaches nine billion, we must carefully weigh the costs and benefits (including the social and ethical costs and benefits) of our actions. With our technical expertise, we can now exert considerable control over natural cycles and systems. However, this control can also perturb these cycles and systems, leading to unintended consequences. These costs can often be reduced if we take into consideration the broader community when we weigh the options for meeting local needs. We must also consider possible “emergent” properties of human and natural systems (properties that were not anticipated in the specifications of the systems) when planning and implementing projects and policies. With technological advances, especially in sensing, systems management, communication, and information processing, we can now more accurately predict and manage the impact of our activities. As these technologies continue to improve and our experience in applying them to natural systems increases, we will be able to act more proactively in managing the interfaces between the human and natural worlds. Our challenge for the twenty-first century is to improve the global human condition without mortgaging the heritage of future generations. ESE offers us an opportunity to develop the tools we will need to meet this challenge. This volume is intended to illuminate and frame this debate. Wm. A. Wulf President National Academy of Engineering

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering Introduction In the twentieth century, we witnessed the transition of a world dominated by nature to a world controlled, designed, and powerfully influenced by humanity. Through technology, we went from making decades-long changes on a local scale to making centuries-long, global-scale changes to the Earth’s biosphere. Advances in technology in the last century supported an unprecedented increase in human population, longer lifespans, a higher standard of living in developed nations, and a broader scope of human influence that now touches the most remote areas of the planet and even into outer space. Consider some of the benefits of this trend: more reliable food supplies, better disease control, longer life spans, more material comforts, and faster communications and transportation. But also consider the following costs: loss of biodiversity, salinization of farmland, environmental contamination, overcrowding of urban centers, and a growing vulnerability to energy and equipment failures. With our unprecedented technical capability, humans are reshaping the Earth to fulfill our needs and desires, but we are just beginning to understand that these changes have much greater and broader impacts than we envisioned. When World War II ended, industrial countries were able to capitalize on explosive advances in science and technology to create a plethora of goods and services, not only for the military but also for the civilian economy. We were fast becoming as rich as Croesus. We soon found, however, that we were also sitting atop a rising garbage pile created by our production processes and life styles. The Affluent Society, by John Kenneth Galbraith, and Silent Spring, by Rachel Carson,

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering were the most influential of many voices that rose shortly after midcentury warning us that the means by which we were achieving our ends of material wealth were seriously threatening the environment and human health. Since the 1970s, Congress has enacted laws to regulate pollution and protect the environment, and the science and technology community has devised cleaner ways to provide material “goods” with many fewer environmental side effects. Scientists and engineers have undertaken major research to improve our understanding of the dynamics of the biosphere. In the past 30 years, we have learned a great deal about the functions and frailties of natural ecosystems, including freshwater cycles, weather and climate, stratospheric ozone, ocean currents, and biodiversity. However, we have often remained narrowly focused on solving a problem without regard to the magnitude of the interactions among human and natural systems. As a result, many of our technological systems do not support the iterative decision-making processes necessary to address complex problems. Now that we are more aware of the magnitude and complexity of the environmental challenges facing us, we must not underestimate the difficulties that lie ahead. The often unintended consequences of our technologies reflect our incomplete understanding of existing data and the inherent complexities of natural and human systems. Earth systems engineering (ESE) is a holistic approach to overcoming these shortcomings. The goals of ESE are to understand the complex interactions among natural and human systems, to predict and monitor more accurately the impacts of engineered systems, and to optimize those systems to provide maximum benefits for people and for the planet. Many of the science, engineering, and ethical tools we will need to meet this enormous challenge have yet to be developed. Innovative engineering is a key tool in addressing emerging global threats that are caused or exacerbated by human activities. Climate change, loss of species, destruction of water resources, depletion of fossil fuels, and accommodating at least three billion additional people in this century are among the challenges engineers must help meet. The challenges are not only complex in themselves, they are also interrelated, and they must be addressed through global cooperation. Thomas Jefferson’s call for institutional flexibility seems more prescient than ever: “As new discoveries are made, new truths discovered, and manners and opinions changed with the pace of circumstances, institutions must advance also to keep pace with the times.” The engineering community faces a three-fold challenge. First, working in partnership with scientists and other representatives of intellectual domains, we must try to analyze and get a clearer understanding of the nature and dynamics of global environmental systems. Second, we must create processes, products, and infrastructures that will enhance our quality of life, stabilize population growth, and assure a healthy, diversified environment. Third, we must work closely with political leaders to develop thoughtful public policies that protect the global commons and enable sustainable services.

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering The longer we delay facing these challenges, the more difficult our task will become. The NAE symposium on Earth systems engineering, held as part of the NAE’s 2000 Annual Meeting, was intended to be a wake-up call to the engineering community. John H. Gibbons Chair

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering This page intentionally left blank.

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering Contents     Keynote Address: It’s the World, Stupid! Norman P. Neureiter   1 PANEL I:   UNDERSTANDING, ADAPTING, AND MITIGATING CLIMATE CHANGE THROUGH ENGINEERING         Climate Systems Engineering Robert M. White   9     Improving Climate Assessment Robert W. Corell   17     How Camest Thou in This Pickle? Jerry M. Melillo   23 PANEL II:   USING BIOTECHNOLOGY FOR THE BENEFIT OF HUMANITY         Genetically Modified Organisms: An Ancient Practice on the Cusp Maxine F. Singer   35

OCR for page R1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering     Benefits of Biotechnology Edward A. Hiler   45     Earth Systems Engineering and Management: The Biotechnology Discourse Braden R. Allenby   51 PANEL III:    ENGINEERS AND POLICY MAKERS: PARTNERS IN THE DEVELOPMENT AND IMPLEMENTATION OF SOLUTIONS         Gaining a Seat at the Policy Table Anita K. Jones   59     Successful Public-Private Research Partnerships Kathleen C. Taylor   65     Defining What We Need to Know Daniel R. Sarewitz   67 PANEL IV:   DESIGNING THE URBAN CENTERS OF TOMORROW         Rethinking Urbanization George Bugliarello   75     Urban Design: The Grand Challenge Lawrence T. Papay   91     Hybrid Cities: A Basis for Hope Geeta Pradhan and Rajesh K. Pradhan   95 Appendix A:   About the Authors   107 Appendix B:   Symposium Agenda   115