The committee included experts in radar technologies, meteorological applications, computer-processing capabilities for data handling, and application to numerical models.

In the summary each of the committee’s recommendations appears under the section of the report in which it is introduced. The recommendations in boldface italics deal with technologies that are deemed worthy of consideration in the development of the future replacement for the current NEXRAD system. They are categorized as “near-term,” “far-term,” or “visionary.”1 The committee also felt that the processes by which the future system is developed and deployed could be as significant as the technologies. The recommendations in standard italics refer to such procedural issues, and have no assigned priority.

The feasibility of the “far-term” and “visionary” technologies depends upon a variety of factors such as the evolution of enabling technologies and advances in basic understanding. Moreover, further developments will depend upon the evolution of the political, social, and economic environment in the nation and the world. In-depth feasibility studies will be required to determine which approaches are most likely to provide the needed improvements. The committee encourages the agencies that commissioned this study to follow through with the investigations necessary to establish the technical feasibility of the “far-term” and “visionary” technologies and to conduct benefit-cost analyses of the feasible ones.


Weather forecasting and warning applications are relying increasingly on integrated observations from a variety of systems that are asynchronous in time and are non uniformly spaced geographically. Weather radar is a key instrument that provides rapid update and full volumetric coverage. On regional scales, the combination of the primary radar with subsidiary radars (either fixed or mobile) with satellite data, with automated meteorological measurements from aircraft, and with a network of ground-based meteorological instruments reporting in real time has been shown to provide enhanced nowcasting and short-term forecasting capabilities. Such capabilities improve severe local storm warnings (including forecasts of storm initiation, evolution, and decay), and they support activities such as construction, road travel, the needs of the aviation system (both civil and military), and recreation.


The committee uses the term “near term” for those technologies for which the capabilities exist currently and could be implemented even before the development of the replacement NEXRAD. “Far-term” technologies are those that could be available within the time period covered by this report (25–30 years), though they will require continued scientific and technological development before they could be implemented. “Visionary” technologies are those that may or may not be ready for operational use within the 25- to 30-year time frame.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement