7
Concluding Remarks: Radar in a Time of Terrorism

This study began during spring 2001, a time marked by unprecedented peace and prosperity in the United States. On September 11, 2001 horrific acts of terrorism rocked the foundation of this country. In subsequent weeks, fears of further domestic terrorism continued, and fears of potential atmospheric releases of chemical, biological, or nuclear materials increased. This report has been prepared in this context. Though a detailed investigation of the application of weather radar to such situations is beyond the scope of this study, the committee feels there are important ways in which weather radar is directly tied to homeland security, and this need should be raised in the context of this report.

The current radar system could be employed in support of tactical and strategic aids for characterizing the transport and deposition of contaminants near the earth’s surface. This could be accomplished by: (1) making direct use of NEXRAD Doppler wind data, (2) assimilating the Doppler wind data into high-resolution mesoscale models to forecast transport and deposition characteristics, (3) deploying emergency relocatable radars similar to those used in tornado research to regions of expected or actual terrorist releases of contaminants, and (4) characterizing and quantifying scavenging and deposition rates of dangerous materials by precipitation (e.g., Seliga et al., 1989; Jylhä, 1999a,b). Some of these possibilities are to be tested in an urban dispersion experiment planned for the Oklahoma City area in 2003.

Future generation weather surveillance radar systems could provide similar, but improved, capabilities in this important area. Because of the potentially important use of weather surveillance radar as a tool in homeland security, it is critical that these discussions and investigations continue.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 62
Weather Radar Technology: Beyond Nexrad 7 Concluding Remarks: Radar in a Time of Terrorism This study began during spring 2001, a time marked by unprecedented peace and prosperity in the United States. On September 11, 2001 horrific acts of terrorism rocked the foundation of this country. In subsequent weeks, fears of further domestic terrorism continued, and fears of potential atmospheric releases of chemical, biological, or nuclear materials increased. This report has been prepared in this context. Though a detailed investigation of the application of weather radar to such situations is beyond the scope of this study, the committee feels there are important ways in which weather radar is directly tied to homeland security, and this need should be raised in the context of this report. The current radar system could be employed in support of tactical and strategic aids for characterizing the transport and deposition of contaminants near the earth’s surface. This could be accomplished by: (1) making direct use of NEXRAD Doppler wind data, (2) assimilating the Doppler wind data into high-resolution mesoscale models to forecast transport and deposition characteristics, (3) deploying emergency relocatable radars similar to those used in tornado research to regions of expected or actual terrorist releases of contaminants, and (4) characterizing and quantifying scavenging and deposition rates of dangerous materials by precipitation (e.g., Seliga et al., 1989; Jylhä, 1999a,b). Some of these possibilities are to be tested in an urban dispersion experiment planned for the Oklahoma City area in 2003. Future generation weather surveillance radar systems could provide similar, but improved, capabilities in this important area. Because of the potentially important use of weather surveillance radar as a tool in homeland security, it is critical that these discussions and investigations continue.