APPENDIX C
Committee and Staff Biographies

Dr. Paul L.Smith (Chairman) is the past director of the Institute of Atmospheric Sciences of the South Dakota School of Mines and Technology and is now a professor emeritus in the Institute. He received his Ph.D. in electrical engineering from Carnegie Institute of Technology (now Carnegie-Mellon University). He served as chief scientist at Air Weather Service (AWS) Headquarters, Scott Air Force Base, during 1974–1975 and received the Award for Meritorious Civilian Service for his contributions to the AWS radar program. He served on the Executive Committee of the International Commission on Clouds and Precipitation from 1988 to 1996, as director of the South Dakota Space Grant Consortium from 1991 to 1996, and as a member of the National Research Council’s National Weather Service (NWS) Modernization Committee from 1997 to 1999. He currently serves on the NEXRAD Technical Advisory Committee. His major research interests are in radar meteorology, with emphasis on quantitative measurement techniques and physical interpretation of the data; cloud physics, with an emphasis on studies of storm microphysics and kinematics using aircraft and radar; and weather modification, with an emphasis on the design and evaluation of experimental and operational projects. He manages the armored T-28 research aircraft facility and has worked on the development of various types of meteorological instrumentation. Dr. Smith is a fellow of the American Meteorological Society (AMS), and he chaired the AMS Committee on Radar Meteorology on two separate occasions. He received the 1992 Editor’s Award from the AMS Journal of Applied Meteorology. He is Life Senior Member of the Institute of Electrical and Electronics Engineers (IEEE), a member of the Weather Modification Association (receiving its 1995 Thunderbird Award) and a member of Sigma Xi.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 76
Weather Radar Technology: Beyond Nexrad APPENDIX C Committee and Staff Biographies Dr. Paul L.Smith (Chairman) is the past director of the Institute of Atmospheric Sciences of the South Dakota School of Mines and Technology and is now a professor emeritus in the Institute. He received his Ph.D. in electrical engineering from Carnegie Institute of Technology (now Carnegie-Mellon University). He served as chief scientist at Air Weather Service (AWS) Headquarters, Scott Air Force Base, during 1974–1975 and received the Award for Meritorious Civilian Service for his contributions to the AWS radar program. He served on the Executive Committee of the International Commission on Clouds and Precipitation from 1988 to 1996, as director of the South Dakota Space Grant Consortium from 1991 to 1996, and as a member of the National Research Council’s National Weather Service (NWS) Modernization Committee from 1997 to 1999. He currently serves on the NEXRAD Technical Advisory Committee. His major research interests are in radar meteorology, with emphasis on quantitative measurement techniques and physical interpretation of the data; cloud physics, with an emphasis on studies of storm microphysics and kinematics using aircraft and radar; and weather modification, with an emphasis on the design and evaluation of experimental and operational projects. He manages the armored T-28 research aircraft facility and has worked on the development of various types of meteorological instrumentation. Dr. Smith is a fellow of the American Meteorological Society (AMS), and he chaired the AMS Committee on Radar Meteorology on two separate occasions. He received the 1992 Editor’s Award from the AMS Journal of Applied Meteorology. He is Life Senior Member of the Institute of Electrical and Electronics Engineers (IEEE), a member of the Weather Modification Association (receiving its 1995 Thunderbird Award) and a member of Sigma Xi.

OCR for page 76
Weather Radar Technology: Beyond Nexrad Dr. David Atlas is a distinguished visiting scientist, NASA Goddard Space Flight Center, Greenbelt, Maryland, and a consulting meteorologist with Atlas Concepts, Bethesda, Maryland. His primary interests are in radar meteorology, precipitation physics, and remote sensing. Tangential interests and experience are in the areas of weather hazards to aviation and the use of air- and space-borne synthetic aperture radar (SAR) over the ocean. He has developed a wide variety of devices and techniques for use in radar detection and warning and has studied many atmospheric phenomena including all types of storms and clear air phenomena such as clear air turbulence and the boundary layer. Dr. Atlas has a broad familiarity with processes of precipitation growth in various kinds of storms and climatic regimes. In recent years he has focused much of his attention on the use of radar and other remote sensors for the quantitative measurement of rainfall from space and for ground truth of space-borne measurements. The aim of this work is to determine how rainfall in the tropical regions of the earth as influences the global circulation and relates to global climate change. Dr. Atlas has served on numerous National Research Council (NRC) committees, is a member of the National Academy of Engineering, and has recently been elected as an honorary member of the American Meteorological Society. Dr. Howard B.Bluestein is professor of meteorology at the University of Oklahoma, where he has served since 1976. He received his Ph.D. in meteorology from the Massachusetts Institute of Technology. His research interests are the observation and physical understanding of weather phenomena on convective, mesoscale, and synoptic scales. Dr. Bluestein is a fellow of the American Meteorological Society (AMS) and the Cooperative Institute for Mesoscale Meteorological Studies. He is past chair of the National Science Foundation (NSF) Observing Facilities Advisory Panel, the AMS Committee on Severe Local Storms, and the University Corporation for Atmospheric Research’s (UCAR) Scientific Program Evaluation Committee, and he is a past member of the AMS Board of Meteorological and Oceanographic Education in Universities. He is also the author of a textbook on synoptic-dynamic meteorology and of Tornado Alley, a book for the scientific layperson on severe thunderstorms and tornadoes. Dr. V.Chandrasekar is a professor in the Electrical Engineering Department at Colorado State University, where he received his Ph.D. Dr. Chandrasekar has been involved with weather radar systems for over 20 years and has about 25 years of experience in radar systems. Dr. Chandrasekar has played a key role in developing the CSU-CHILL radar as one of the most advanced meteorological radar systems available for research. He is continuing to work actively with the CSU-CHILL radar, supporting its research and education mission. He specializes in developing new radar technologies and techniques for solving meteorological problems. He has actively pursued applications of polarimetry for cloud microphysical applications, as well as neural network based radar rainfall estimates and

OCR for page 76
Weather Radar Technology: Beyond Nexrad fuzzy logic systems for hydrometeor identification. He is an avid experimentalist, conducting experiments to collect in situ observations to verify the new techniques and technologies. He is coauthor of two textbooks: Polarimetric and Doppler Weather Radar (Cambridge University Press) and Probability and Random Processes (McGraw Hill). Dr. Eugenia Kalnay is chair of the Department of Meteorology at the University of Maryland, College Park. Her interests are in predictability and ensemble forecasting, numerical weather prediction, and data assimilation. With her collaborator Dr. Zhao-Xia Pu, she has introduced the method of backward integration of atmospheric models and several novel applications such as FAST 4-D VAR, and targeted observations. With her collaborator Dr. Zoltan Toth, she introduced the breeding method for ensemble forecasting. She is the author (with Ross Hoffman and Wesley Ebisuzaki) of other widely used ensemble methods known as Lagged Averaged Forecasting and Scaled LAF. She has also published papers on atmospheric dynamics and convection, numerical methods, and the atmosphere of Venus. She was elected into the National Academy of Engineering for advances in understanding atmospheric dynamics, numerical modeling, and atmospheric predictability and in the quality of U.S. operational weather forecasts. Dr. R.Jeffrey Keeler, a senior research engineer with the Remote Sensing Facility at the National Center on Atmospheric Research’s Atmospheric Technology Division (NCAR/ATD), coordinates surface-based remote sensing and NEXRAD development activities plus advanced remote sensing techniques. Dr. Keeler’s research has focused on signal processing techniques for remote sensors, including microwave weather radars, optical sensors (lidar), UHF wind profilers, and acoustic sounding systems. Currently he is developing adaptive optimization techniques for fuzzy logic networks. At NCAR, Dr. Keeler has been responsible for advanced radar techniques using phased array antennas and complex pulse compression waveforms. He has assisted the Federal Aviation Administration (FAA) in planning the next generation aircraft and weather surveillance radar using these contemporary technologies and presently leads the NCAR program aimed at data-quality enhancements to the NEXRAD radars for the National Weather Service. In the 1970s, Dr. Keeler developed acoustic sounding data acquisition and processing equipment and digital processing techniques for Doppler lidar systems, and he managed a large simulation model of a satellite wind-finding lidar for global wind measurements. Previously, at Bell Laboratories, he designed and built a working model of the first digital equalizer, which has become commonplace in today’s PC modems. Dr. Keeler is an adjunct professor at Colorado State University, teaching portions of meteorological radar courses, and he has taught in-depth remote sensing courses within NCAR and at foreign weather services. Dr. Keeler received his Ph.D. in electrical engineering from the University of Colorado.

OCR for page 76
Weather Radar Technology: Beyond Nexrad Dr. John McCarthy is the manager of Scientific and Technical Program Development at the Naval Research Laboratory in Monterey, California. Previously, Dr. McCarthy served as Special Assistant for Program Development to the Director of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. Prior to that, he served as the director of the Research Applications Program (RAP) at NCAR. As director of RAP, he directed research associated with aviation weather hazards including NCAR activities associated with the Federal Aviation Administration (FAA) Aviation Weather Development Program, the FAA Terminal Doppler Weather Radar Program, and a national icing/winter storm research program. Previously, he directed NCAR activities associated with the Low-Level Windshear Alert System (LLWAS) project, which addressed the technical development of sensing systems to detect and warn of low-altitude windshear, the Joint Airport Weather Studies (JAWS), and the Classify, Locate and Avoid Wind Shear (CLAWS) project at NCAR. Additionally, Dr. McCarthy was the principal meteorologist associated with the development of the FAA Wind Shear Training Aid. In January 2000, Dr. McCarthy was named a fellow of the American Meteorological Society. Since the beginning of his tenure at NRL, Dr. McCarthy has developed programs in improving ceiling and visibility forecasting and in flight operations risk assessment, and he developed a broad program effort to improve short-term weather information to Navy battlegroups, entitled “NOWCAST for the Next Generation Navy.” Dr. McCarthy received his Ph.D. in geophysical sciences from the University of Chicago. Dr. Steven A.Rutledge heads the Department of Atmospheric Science at Colorado State University. His interests include mesoscale meteorology, atmospheric electricity, radar meteorology, and cloud physics. Dr. Rutledge is a member of the NASA TRMM Science Team. He was a cochair for the MCTEX Experiment and the STERAO-A Deep Convection Experiment. He was also the lead scientist for the shipboard radar program in TOGA COARE. He was the lead scientist for the TRMM-LBA Field Campaign in Brazil in January and February 1999. He also serves as the scientific director of the CSU-CHILL National Radar Facility, overseeing all engineering and scientific activities. In 1995 he served as chair of the 27th American Meteorological Society (AMS) Conference on Radar Meteorology. He is a member of the National Science Foundation’s Facilities Advisory Council, which allocates aircraft and radar resources for field projects sponsored by the National Science Foundation (NSF). He is a past member of the AMS Committees on Radar Meteorology and Cloud Physics. Presently he serves as an associate editor for the Journal of Geophysical Research; he has also served as editor for Geophysical Research Letters and as an associate editor for Monthly Weather Review. Dr. Thomas A.Seliga is an electronics engineer in the Surveillance and Sensors Division of the Volpe National Transportation Systems Center in the U.S. Depart-

OCR for page 76
Weather Radar Technology: Beyond Nexrad ment of Transportation. Dr. Seliga received his Ph.D. in electrical engineering from Pennsylvania State University. Dr. Seliga’s research interests have been primarily in topics related to electromagnetic wave propagation and scattering, focusing mostly on problems in radio propagation and radar meteorology; he has also studied air pollution dispersion modeling and rainfall scavenging of aerosols. In the area of radar remote sensing, he originated and furthered the development of the concepts of differential reflectivity ZDR and specific differential phase shift KDP. These and other related polarimetric measurements have revolutionized the field of radar meteorology by improving radar’s ability to quantify rainfall rates, detect hail, and discriminate between water and ice phase hydrometeors, and they have advanced the understanding of cloud physics. Most recently, he recognized and demonstrated the value of applying measurements from the NEXRAD radar system and other elements of the National Weather Service’s Modernization and Associated Restructuring Program to surface transportation. He is a member of the American Association for the Advancement of Science, the American Geophysical Union, the Institute of Electrical and Electronics Engineers (Fellow), the American Meteorological Society, and the American Society for Engineering Education. Dr. Robert J.Serafin, former director of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, was President of the American Meteorological Society (AMS) for 2001. He holds a Ph.D. in radar meteorology from the Illinois Institute of Technology. In 1989 he was appointed director of NCAR. The holder of three patents, Dr. Serafin has published more than 50 technical and scientific papers. He established the Journal of Atmospheric and Oceanic Technology and was its coeditor for several years. He has served on several National Research Council (NRC) panels and committees and was chair of the NRC Committee on National Weather Service Modernization. He also chairs a committee that advises the Federal Aviation Administration, the U.S. Air Force, and the National Weather Service on the nation’s Doppler weather radar system. He is a member of the National Academy of Engineering, a fellow of the AMS, and a fellow of the Institute of Electrical and Electronics Engineers. Dr. F.Wesley Wilson, Jr. is currently with National Center for Atmospheric Research’s Research Applications Program (NCAR/RAP) and recently retired from Massachusetts Institute of Technology’s (MIT) Lincoln Laboratory, where he led the Federal Aviation Administration’s (FAA) Ceiling and Visibility Product Development Team and the first ceiling and visibility field project, the San Francisco Marine Stratus Initiative. Dr. Wilson received his Ph.D. from the University of Maryland, College Park. Through his career, Dr. Wilson’s research emphasis has shifted from pure mathematics (differential topology and dynamical systems) to numerical and applied mathematics, and now to the current emphasis on the development of prototype operational meteorological systems and statisti-

OCR for page 76
Weather Radar Technology: Beyond Nexrad cal forecast models. Dr. Wilson’s previous contributions to FAA weather products include the development of two LLWAS algorithms, development of a portion of the TDWR microburst algorithm, and development of the ITWS gridded winds algorithm. Dr. Vaughan C.Turekian is a program officer in the National Academy of Science’s Board on Atmospheric Sciences and Climate and the Program Director for the Committee on Global Change Research. He received his B.S. degree from Yale University in geology and geophysics and international studies and his Ph.D. in environmental sciences from the University of Virginia. Dr. Turekian has been study director for a number of NAS studies including the recent Climate Change Science report requested by the White House.