National Academies Press: OpenBook

Weather Radar Technology Beyond NEXRAD (2002)

Chapter: 1. Role of Radar in the Weather and Climate Observing and Predicting System

« Previous: Summary
Suggested Citation:"1. Role of Radar in the Weather and Climate Observing and Predicting System." National Research Council. 2002. Weather Radar Technology Beyond NEXRAD. Washington, DC: The National Academies Press. doi: 10.17226/10394.
×

1
Role of Radar in the Weather and Climate Observing and Predicting System

Radars today are used to detect and track aircraft, spacecraft, and ships at sea as well as insects and birds in the atmosphere; measure the speed of automobiles; map the surface of the earth from space; and measure properties of the atmosphere and oceans. Principles of radar have led to the development of other similar technologies such as sonar, sodar and lidar (laser radar) that permit detection of phenomena and targets in the oceans and in the optically clear air.

In the past half century, weather radar has advanced greatly and has played increasingly important roles that span a wide spectrum of meteorological and climatological applications. Of particular importance has been its ability to detect and warn of hazards associated with severe local storms that include hail, tornadoes, high winds, and intense precipitation. Weather radar also monitors larger weather systems such as hurricanes that often include similar phenomena but can extend over very large areas. Today, weather radars improve aviation safety and increase the operational efficiency of the entire air transport industry, and they contribute to agriculture alerts and flood warnings through monitoring of rainfall intensity. They are also used regularly for recreational planning and other weather-impacted activities. Radar measurements have also been key to many remarkable advances in our understanding of the atmosphere and to better weather prediction over a variety of temporal and spatial scales. Such advances have been enabled through a combination of progressive improvements in radar hardware, signal processing, automated weather-based algorithms, and displays.

In recent years, added improvements in short-range forecasting and nowcasting have also resulted from the development of integrated observing systems that blend data from weather radar and other instruments to produce a more complete picture of atmospheric conditions. Two examples of such relatively

Suggested Citation:"1. Role of Radar in the Weather and Climate Observing and Predicting System." National Research Council. 2002. Weather Radar Technology Beyond NEXRAD. Washington, DC: The National Academies Press. doi: 10.17226/10394.
×

new systems are the Advanced Weather Interactive Processing System (AWIPS)1 and the Integrated Terminal Weather System (ITWS). AWIPS is a modern data acquisition and distribution system that gives meteorologists singular workstation access to NEXRAD radar products, satellite imagery, gridded weather forecast data, point measurements, and computer- and man-made forecast and warning products. The result is an integrated forecasting process that utilizes a comprehensive set of data for application by National Weather Service (NWS) Offices and others to generate more accurate and timely weather forecasts and warnings (Facundo, 2000). ITWS combines data from a number of weather radars, including NEXRAD, the Terminal Doppler Weather Radar (TDWR), and airport surveillance radars (ASR), with lightning cloud-to-ground flash data and automated weather station measurements to produce a suite of products that display current weather as well as nowcast weather out to around one hour for use by air traffic controllers in the management of airport terminal operations (Evans and Ducot, 1994).

The evolution of weather radar in the United States has been marked by the development and implementation of a series of operational systems, including the CPS-9, the WSR-57, and the WSR-88D (NEXRAD). Each of these systems was a response to the recognition of new needs and opportunities and/or deficiencies in the prior generation radar. The CPS-9 (X-band or 3-cm wavelength) was the first radar specifically designed for meteorological use and was brought into service by the U.S. Air Force USAF Air Weather Service in 1954. The WSR-57 was the radar chosen for the first operational weather radar system of the NWS. It operated at S-band or 10-cm wavelength, chosen to minimize the undesirable effects of signal attenuation by rainfall experienced on the CPS-9 3-cm wavelength radar. The development of the WSR-88D was in response to demand for better weather information and resulted from advances in Doppler signal processing and display techniques, which led to major improvements in capabilities of measuring winds, detecting tornadoes, tracking hurricanes, and estimating rainfall. These remarkable new measurement capabilities were a direct consequence of many engineering and technological advances, primarily advances in integrated circuits, digital signal processing theory, and display systems, and these advances led to advanced research weather radars. Radar meteorology research has also played a critical role in these developments through the generation of new knowledge of the atmosphere, especially regarding cloud and precipitation physics, severe storm evolution, kinematics of hurricanes, and detection of clear air phenomena such as gust fronts and clear air turbulence. Such knowledge has greatly benefited the operational utility of weather radar, particularly through innovations, understanding, and testing of algorithms that process radar data into meaningful physical descriptions of atmospheric phenomena and weather con-

1  

A complete list of acronyms and their definitions is provided in Appendix B.

Suggested Citation:"1. Role of Radar in the Weather and Climate Observing and Predicting System." National Research Council. 2002. Weather Radar Technology Beyond NEXRAD. Washington, DC: The National Academies Press. doi: 10.17226/10394.
×

ditions. It was the combination of technological advances with new scientific knowledge that enabled the deployment of the NEXRAD system and ensured its success as a highly valuable weather observing system.

This history of the national weather radar system and the multiplicity of factors that influenced the development of NEXRAD into its present form is necessarily brief. Most importantly, it does not do justice to the many persons who contributed to the current state of the nation’s NEXRAD system or to the numerous scientific and technological advances that have made the system (current and future) possible. It is not possible to adequately credit all those whose knowledge and skills have led to the current system. However, a number of recent review articles by Rogers and Smith (1996), Serafin (1996), and Whiton et al. (1998) provide a starting point for this analysis. Additionally, a number of books and monographs, including works by Battan (1959, 1973), Doviak and Zrnic (1993), Atlas (1990), Sauvageot (1992), and Bringi and Chandrasekar (2001), provide valuable insight. The American Meteorological Society (AMS) preprints of the Conferences on Radar Meteorology also provide a rich resource on related matters.

As was the case with prior generation radar, the WSR-88D has achieved many more goals than was anticipated at the time of its design. The WSR-88D was motivated largely by the needs for early severe storm detection and warning. In this regard it has proved to be remarkably successful (Serafin and Wilson, 2000) and has become the cornerstone of the modernized weather service in the United States (NRC, 1999). But many other important applications have emerged from experience with NEXRAD and through advances in the research community. Thus, needs and opportunities have expanded and limitations have been found (see Chapter 2). Among the primary new developments in recent years is radar polarimetry. This development allows for data-quality enhancements and improved accuracy in the determination of rainfall. This is consistent with the emphasis on quantitative precipitation estimation (QPE) and quantitative precipitation forecasting (QPF), which have been identified as one of the top priority goals in meteorology by both the U.S. Weather Research Program (USWRP) (Fritsch et al., 1998; USWRP, 2001) and the World Meteorological Organization (WMO) (Keenen et al., 2002). Another advance has been the measurement of air motion in the optically clear air, which provides important wind information fundamental to a variety of applications. A more recent development based upon the long-term behavior of precipitation systems (e.g., Carbone et al., 2002) emphasizes the climatic applications of NEXRAD data.

Moreover, it is no longer appropriate to use the radar network as a standalone system. One cannot overestimate the importance of using the radars as part of an integrated observing system. On regional scales, the combination of the primary radar with subsidiary radars, with satellite data, with automated meteorological measurements from aircraft, and with a network of ground-based meteorological instruments reporting in real time has led to advances in vital

Suggested Citation:"1. Role of Radar in the Weather and Climate Observing and Predicting System." National Research Council. 2002. Weather Radar Technology Beyond NEXRAD. Washington, DC: The National Academies Press. doi: 10.17226/10394.
×

nowcasting applications of severe weather. Such applications include improving the accuracy of severe local storm warnings (including forecasts of storm initiation, evolution, and decay), providing reliable guidance for construction activities, providing better information on current and future road conditions, furthering the needs of the aviation system for improving safety and operational efficiency (both civil and military), and helping individuals plan recreational activities.

Recommendation2

The next generation of radars should be designed as part of an integrated observing system aimed at improving forecasts and warnings on relevant time and space scales.

2  

Recommendations in this report appear in italics. Those in bold-face deal with technological approaches that are deemed worthy of consideration in the development of the future replacement for the NEXRAD system; they are categorized as “near-term,” “far-term,” or visionary.” The committee uses the term “near term” for those technologies for which the capabilities exist currently and could be implemented even before the development of the replacement NEXRAD. “Far-term” technologies are those that could be available within the time period covered by this report (25–30 years), though they will require continued scientific and technological development before they could be implemented. “Visionary” technologies are those that may or may not be ready for operational use within the 25- to 30-year time frame. The other recommendations deal with the processes by which the future system is developed and deployed.

Suggested Citation:"1. Role of Radar in the Weather and Climate Observing and Predicting System." National Research Council. 2002. Weather Radar Technology Beyond NEXRAD. Washington, DC: The National Academies Press. doi: 10.17226/10394.
×
Page 8
Suggested Citation:"1. Role of Radar in the Weather and Climate Observing and Predicting System." National Research Council. 2002. Weather Radar Technology Beyond NEXRAD. Washington, DC: The National Academies Press. doi: 10.17226/10394.
×
Page 9
Suggested Citation:"1. Role of Radar in the Weather and Climate Observing and Predicting System." National Research Council. 2002. Weather Radar Technology Beyond NEXRAD. Washington, DC: The National Academies Press. doi: 10.17226/10394.
×
Page 10
Suggested Citation:"1. Role of Radar in the Weather and Climate Observing and Predicting System." National Research Council. 2002. Weather Radar Technology Beyond NEXRAD. Washington, DC: The National Academies Press. doi: 10.17226/10394.
×
Page 11
Next: 2. The Current System »
Weather Radar Technology Beyond NEXRAD Get This Book
×
Buy Paperback | $47.00 Buy Ebook | $37.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Weather radar is a vital instrument for observing the atmosphere to help provide weather forecasts and issue weather warnings to the public. The current Next Generation Weather Radar (NEXRAD) system provides Doppler radar coverage to most regions of the United States (NRC, 1995). This network was designed in the mid 1980s and deployed in the 1990s as part of the National Weather Service (NWS) modernization (NRC, 1999). Since the initial design phase of the NEXRAD program, considerable advances have been made in radar technologies and in the use of weather radar for monitoring and prediction. The development of new technologies provides the motivation for appraising the status of the current weather radar system and identifying the most promising approaches for the development of its eventual replacement.

The charge to the committee was to determine the state of knowledge regarding ground-based weather surveillance radar technology and identify the most promising approaches for the design of the replacement for the present Doppler Weather Radar. This report presents a first look at potential approaches for future upgrades to or replacements of the current weather radar system. The need, and schedule, for replacing the current system has not been established, but the committee used the briefings and deliberations to assess how the current system satisfies the current and emerging needs of the operational and research communities and identified potential system upgrades for providing improved weather forecasts and warnings. The time scale for any total replacement of the system (20- to 30-year time horizon) precluded detailed investigation of the designs and cost structures associated with any new weather radar system. The committee instead noted technologies that could provide improvements over the capabilities of the evolving NEXRAD system and recommends more detailed investigation and evaluation of several of these technologies. In the course of its deliberations, the committee developed a sense that the processes by which the eventual replacement radar system is developed and deployed could be as significant as the specific technologies adopted. Consequently, some of the committee's recommendations deal with such procedural issues.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!