FIGURE 1.2 Current applications of nanotechnology and time line for anticipated advances.

store information and the silicon integrated circuit chips that process information in every Internet server and personal computer. The manufacture of silicon transistors already requires the controlled deposition of layered structures just a few atoms thick (about 1 nanometer). Lateral dimensions are as small as 180 nanometers for the critical gate length, and semiconductor industry roadmaps call for them to get even smaller. With shorter gate lengths come smaller, faster, more power-efficient transistors and corresponding improvements in the cost and performance of every digital appliance. Similar processes are required for the manufacture of information storage devices. The giant magnetoresistive (GMR) read heads in computer industry standard hard disk drives are composed of carefully designed layered structures, where each layer is just a few atoms thick. The magnetic thin film on the spinning disk is also a nanostructured material. Last year IBM announced the introduction of an atomically thin layer of ruthenium (humorously referred to as “pixie dust”) to substantially increase the information storage density of its products. Greater storage density translates directly to the less expensive storage of information. Incorporating nanostructured materials and nanoscale components into complex systems, both magnetic data storage and silicon microelectronics provide a glimpse of the future of nanoscale science and technology. Box 1.1 provides a look at the history of miniaturization in computing and the potential impact of nanoscale science and technology on that sector.

In biomedical areas, structures called liposomes have been synthesized for improved delivery of therapeutic agents. Liposomes are lipid spheres about 100 nanometers in diameter. They have been used to encapsulate anticancer drugs for the treatment of AIDS-related Kaposi’s sarcoma. Several companies are using magnetic nanoparticles in the analyses of blood, urine, and other body fluids to speed up separation and improve selectivity. Other companies have developed derivatized fluorescent nanospheres and nanoparticles that form the basis for new detection technologies. These reagent nanoparticles are used in new devices and systems for infectious and genetic disease analysis and for drug discovery.

Many uses of nanoscale particles have appeared in specialty markets, such as defense applications, and in markets for scientific and technical equipment. Producers of optical materials and electronics substrates such as silicon and gallium arsenide have embraced the use of nanosize particles for chemomechanical polish-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement