BOX 1.1
Nanotechnology and Computers

The history of information technology has been largely a history of miniaturization based on a succession of switching devices, each smaller, faster, and cheaper to manufacture than its predecessor (Figure 1.1.1). The first general-purpose computers used vacuum tubes, but the tubes were replaced by the newly invented transistor in the early 1950s, and the discrete transistor soon gave way to the integrated circuit approach. Engineers and scientists believe that the silicon transistor will run up against fundamental physical limits to further miniaturization in perhaps as little as 10 to 15 years, when the channel length, a key transistor dimension, reaches something like 10 to 20 nm. Microelectronics will have become nanoelectronics, and information systems will be far more capable, less expensive, and more pervasive than they are today. Nevertheless, it is disquieting to think that today’s rapid progress in information technology may soon come to an end. Fortunately, the fundamental physical limits of the silicon transistor are not the fundamental limits of information technology. The smallest possible silicon transistor will probably still contain several million atoms, far more than the molecular-scale switches that are now being investigated in laboratories around the world.

But building one or a few molecular-scale devices in a laboratory does not constitute a revolution in information technology. To replace the silicon transistor, these new devices must be integrated into complex information processing systems with billions and eventually trillions of parts, all at low cost. Fortunately, molecular-scale components lend themselves to manufacturing processes based on chemical synthesis and self-assembly. By taking increasing advantage of these key tools of nanotechnology, it may be possible to put a cap on the amount of lithographic information required to specify a complex system, and thus a cap on the exponentially rising cost of semiconductor manufacturing tools. Thus, nanotechnology is probably the future of information processing, whether that processing is based on a nanoscale silicon transistor manufactured to tolerances partially determined by processes of chemical self-assembly or on one or more of the new molecular devices now emerging from the laboratory.

FIGURE 1.1.1 The increasing miniaturization of components in computing and information technology. Adapted from R. Kurzweil, The Age of Spiritual Machines, Penguin Books, 1999.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement