6

4.6604

7

5.8122

Therefore, the P–1 [.99 ; K.95(123)] upper tolerance limit is 7 suicides per month in the example posed.

REFERENCES

Beck AT, Steer RA. 1987. Beck Depression Inventory: Manual. San Antonio, TX: Psychological Corporation.

Bock RD, Aitkin M. 1981. Marginal maximum likelihood estimation of item parameters: an application of the EM algorithm. Psychometrika, 46: 443–459.

Böhning D, Schlattmann P, Lindsay BG. 1992. Computer-assisted analysis of mixtures (C.A.MAN): Statistical algorithms. Biometrics, 48: 283–303.

Böhning D, Dietz E, Schlattmann P. 1998. Recent developments in computer-assisted analysis of mixtures. Biometrics, 54: 525–536.

Böhning D. 1999. Computer-Assisted Analysis of Mixtures and Applications. Meta-Analysis, Disease Mapping and others. Chapman and Hall CRC: Boca Raton.


Cox C. 1995. Location-scale cumulative odds models for ordinal data: A generalized nonlinear model approach. Statistics in Medicine, 14: 1191–1203.

Cox DR, Hinkley DV. 1974. Theoretical Statistics. Chapman and Hall: London.


Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39: 1–38.


Gibbons RD. 1987. Statistical models for the analysis of volatile organic compounds in waste disposal sites. Ground Water, 25: 572–580.

Gibbons RD, Clark DC, Fawcet J. 1990. A statistical method for evaluating suicide clusters and implementing cluster surveillance. American Journal of Epidemiology, 132 (Suppl 1): S183–S191.


Hahn GJ, Meeker WQ. 1991. Statistical Intervals: A Guide for Practitioners. Wiley: New York.

Hartley HO, Pearson ES. 1950. Tables of the chi-squared integral and of the cumulative Poisson distribution. Biometrika, 37: 313–325.

Hedeker D, Gibbons RD. 1994. A random effects ordinal regression model for multilevel analysis. Biometrics, 50: 933–944.

Hedeker D, Mermelstein RJ. 1998. A multilevel thresholds of change model for analysis of stages of change data. Multivariate Behavioral Research, 33: 427–455.


Laird N. 1978. Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73: 805–811.

Liang KY, Zeger SL. 1986. Longitudinal data analysis using generalized linear models. Biometrika, 73: 13–22.

Lindsay BG. 1983. The geometry of mixture likelihoods, part I: A general approach. Annals of Statistics, 11: 783–792.

Lindsay BG. 1995. Mixture Models: Theory, Geometry and Applications. NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 5. Hayward, CA: Institute of Mathematical Statistics.

Lindsay BG, Roeder K. 1992. Residual diagnostics for mixture models. Journal of the American Statistical Association, 87: 785–794.


Maindonald JH. 1984. Statistical Computation. Wiley: New York.

McCullagh P. 1980. Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society, Series B, 42: 109–142.

McLachlan GJ, Krishnan T. 1997. The EM Algorithm and Extensions. New York: Wiley.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement