A STRATEGY TO DEVELOP ECONOMICALLY VIABLE COUNTERTERRORISM TECHNOLOGIES

Technologically speaking, the United States is enormously inventive, but without commercialization, the deployment of technological advances is not very likely. To develop the products and systems needed to protect vital systems and respond to attacks, probably the most successful strategy will be to focus explicitly on technologies that have broader commercial applications as well as value for counterterrorism efforts. (This topic is discussed further in Chapter 13.) For example, some sensor technologies can be developed for more general or larger markets (biomedicine, environmental monitoring, food safety) while also being useful for emergency response and incident management.

A similar trend, driven by the dual goals of environmental quality and economic efficiency, is already moving the chemical industry in new directions. Sustainable (green) chemistry—the design, manufacture, and use of efficient, effective, safe, and environmentally benign chemical processes and products—is now receiving widespread industry attention, though the need for considerable improvement remains. Government, academia, and industry should strive to identify research directions that could lead to safer, intrinsically secure, economically viable chemical processes and procedures that are valuable for our long-term sustainability. Such efforts also have a benefit for our nation’s counterterrorism efforts as well: If we make fewer toxic products, use milder manufacturing conditions, and produce less toxic waste, we reduce the opportunities for terrorists.

REFERENCES

Accomazzo, M.A., G. Ganzi, and R. Kaiser. 1988. “Deionized (DI) Water Filtration Technology,” Handbook of Contamination Control in Microelectronics, D.L. Tolliver, ed. Noyes Publications, N.J., pp. 210-346.


Burrows, W.D., and S.E. Renner. 1999. “Biological Warfare Agents as Threats to Potable Water,” Environmental Health Perspectives, Vol. 107, No. 12, pp. 975-984.


Canto, M. 1998. “Woman Arrested in Cyanide Scare,” Seattle Times, August 24.

Clark, R.M., and R.A. Deininger. 2000. “Protecting the Nation’s Critical Infrastructure: The Vulnerability of U.S. Water Supply Systems,” Journal of Contingencies and Crisis Management, Vol. 8, No. 2, pp. 73-80.


Dandrieux, A., G. Dusserre, J. Ollivier, and H. Fourne. 2001. “Effectiveness of Water Curtains to Protect Firemen in Case of an Accidental Release of Ammonia: Comparison of the Effectiveness of Two Different Rates of Ammonia,” Journal of Loss Prevention in the Process Industries, Vol. 5, pp. 349-355.


Ensor, D.S., and R.P. Donovan. 1988. “Aerosol Filtration Technology,” Handbook of Contamination Control in Microelectronics, D.L. Tolliver, ed. Noyes Publications, N.J., pp. 1-67.


Food and Drug Administration (FDA). 1998. Managing Food Safety: A HACCP Principles Guide for Operators of Food Establishments at the Retail Level (Draft). Available online at <http://www.cfsan.fda.gov/~dms/hret-toc.html>, accessed March 8, 2002.

FDA. 2001. Seafood HACCP. Available online at <http://www.cfsan.fda.gov/~comm/haccpsea.html>, accessed March 8, 2002.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement