• Create digital floor plans and maps of other physical infrastructure, and use wearable computers and “map ants” to generate maps that can be updated.

  • Develop tools to map network topology, especially of converged networks that handle voice and data traffic.

  • Begin to characterize the functionality of regional networks for emergency responders.

Information Fusion

Promising to play a central role in the future prevention, detection, and remediation of terrorist acts, “information fusion” is defined as the use of computer technology to acquire data from many sources, integrate these data into usable and accessible forms, and interpret them. Such processed data can be particularly valuable for decision makers in law enforcement, the intelligence community, emergency-response units, and other organizations combating terrorism. Not surprisingly, an inherent problem of information fusion is data interoper-ability—the difficulty of merging data from multiple databases, multiple sources, and multiple media.

  • Prevention. Security checkpoints have become more important and more tedious than ever at airports, public buildings, sporting venues, and national borders. But the efficiency and effectiveness of checkpoints could be significantly improved by creating information-fusion tools to support the checkpoint operator in real time. For example, future airport-security stations could integrate data received from multiple airports to provide a more global view of each passenger’s luggage and activities on connecting flights. The stations could use data-mining methods to learn which luggage items most warrant hand-inspection, and they could capture data from a variety of biometric sensors to verify the identities of individuals and search for known suspects.

  • Detection. Intelligence agencies are routinely involved in information fusion as they attempt to track suspected terrorists and their activities, but one of their primary problems is managing the flood of data. There are well-known examples in which planned terrorist activity went undetected despite the fact that relevant evidence was available to spot it—the evidence was just one needle in a huge haystack. Future intelligence and law-enforcement activities could therefore benefit enormously from advances in automatic interpretation of text, image, video, sensor, and other kinds of unstructured data. This would enable the computer to sort efficiently through the massive quantities of data to bring the relevant evidence (likely combined from various sources) to the attention of the analyst.

  • Response. Early response to biological attacks could be supported by collecting and analyzing real-time data, such as admissions to hospital emer-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement