opportunities, and projects aimed at developing an overall systems approach to counterterrorism. The agenda should include the following:

  • System-of-systems perspectives for homeland security;

  • Agent-based and system dynamics modeling;

  • Analysis of risk assessment and management from multiple perspectives, including the risk of potentially extreme and catastrophic events;

  • Modeling of interdependencies among critical infrastructures; and

  • Development of simulators and learning environments.

Research projects should involve many domains of expertise; a single disciplinary perspective should not dominate the agenda. NSF would be an appropriate lead agency for such a research effort, but other federal research agencies, such as the Defense Threat Reduction Agency, DARPA, and the Intelligence Community’s Advanced Research and Development Activity, have relevant expertise and should develop companion programs to support the long-term research agenda.


The development of effective counterterrorism strategies relies on the pursuit of specific science and technology goals as well as on a systems approach (including study of those who would attack the United States) within which to apply the results. This suggests a need for systems-level thinking in education and, more specifically, a provision for educational degrees focused on systems, to help create a cadre of people who understand the interconnectedness of our society’s many parts.

Degree programs at the graduate level are needed to produce leaders fully cognizant of the issues of systems and their complexity—people who can operate at the interfaces and offer an integrated vision of, say, engineering and political systems. Such degree programs will be characterized by a highly interdisciplinary course of study, which can be difficult to organize within the departmental structure of universities.8

In addition to people who have received an education specifically focused on


This issue was framed by Kennedy (1997) in his insightful book Academic Duty. In the final chapter, he asks: “Can the universities really make a difference with respect to the Big Problems facing us?” His list of challenges ranges from disarmament to genetic testing, but although these problems are intellectually exciting and analytically demanding, they do not come in disciplinary packages. Instead, these real, complex, and large-scale problems demand the involvement of graduates—possibly the product of “re-engineered” university departments, according to Kennedy—who are not only well trained in their fields but also skillful in systems thinking and comfortable working in a highly interdisciplinary environment.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement