Effective Responses to Nuclear and Radiological Attacks

Responses to nuclear and radiological attacks fall into two distinct categories that could require very different types of governmental actions: (1) attacks involving the detonation of a nuclear weapon or IND and (2) attacks involving RDDs. The first type of attack would likely involve massive property destruction and loss of life, making it difficult to mount an effective emergency response, at least over the short term. An emergency response action lasting months to years might be required in the wake of such an attack. The second type of attack would likely involve localized loss of life and no immediate danger to surrounding populations or property, but the potential for misinformation and public panic would be high. An emergency response action lasting weeks to months might be required, although longer-term cleanup might be needed for large RDD attacks. The worst scenarios involving nuclear power plants fall somewhere between these two categories, but, as noted in the classified annex, studies have not yet determined how credible these scenarios are.

Responses to nuclear and radiological attacks are governed by the Federal Radiological Emergency Response Plan,12 which establishes authorities and procedures for responding to “peacetime” radiological emergencies such as accidents at nuclear power plants. This plan devotes only three paragraphs to radiological sabotage and terrorism, giving the Federal Bureau of Investigation the lead for investigating such acts and calling on other agencies, especially the designated lead federal agency, to assist the bureau in its investigative mission. The plan concludes that acts of sabotage and terrorism should not be treated as separate types of emergencies but are simply a “complicating dimension” of the other types of emergencies.

The correctness of this conclusion seems questionable given the attacks that might be envisaged in light of September 11. A terrorist attack could be much larger in magnitude than other events anticipated under this emergency plan. Such an attack could require large numbers of rescuers and medical personnel trained to deal with radiological emergencies; the ability to manage large populations in contaminated urban areas for long periods of time, potentially years; the ability to predict in real time the spread of radioactive contamination in debris clouds and provide this information to potentially affected populations in real time so that appropriate actions can be taken; and timely and effective cleanup capabilities. The current plan does not appear to provide the guidance needed to ensure this type of response in the case of nuclear terrorist attack.

12  

Federal Radiological Emergency Response Plan—Operational Plan, published by the Federal Emergency Management Agency in the Federal Register on May 1, 1996, with a correction published on June 5, 1996. The plan is available online at <http://www.au.af.mil/au/awc/awcgate/frerp/frerp.htm>. Accessed on April 22, 2002.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement