Recommendation 3.3: Create a global network for detection and surveillance, making use of computerized methods for real-time reporting and analysis to rapidly detect new patterns of disease locally, nationally, and—ultimately—internationally. The use of high-throughput methodologies that are being increasingly utilized in modern biological research should be an important component of this expanded and highly automated surveillance strategy.

Another important area for applied research is the development of improved clinical diagnostics—rapid assays for the detection of common pathogens and BW agents—that could be used in primary care settings as well as referral laboratories. In addition, the kinds of needs that were described above for preclinical detection also apply to the field of clinical diagnostics. Standards are needed by which diagnostic methods and technology can be rigorously evaluated and validated, and centralized repositories of standardized reagents and samples are needed as well. Because the development and evaluation of diagnostics require interdisciplinary applied research, it is currently difficult to find targeted sources of support for these efforts. NIAID, CDC, and USDA should consider providing extramural funding programs to stimulate research in this area.

Because of the low likelihood of infections with BW agents compared to common, widely circulating agents like influenza viruses, routine application of rapid diagnostics for potential BW agents in a primary care setting in the absence of clinical suspicion will face problems with false-positive and false-negative results, for which rapid adjunctive standards do not exist. A triage system could be applied in which patients with relevant symptoms who test negative for a panel of expected pathogens would be sent to a referral laboratory for a second round of diagnostic tests, which could include suspected BW agents and broad-range methods.

High-throughput automated laboratory technology can now be applied to assist in these efforts. Positive samples could be forwarded to central public health laboratories for more comprehensive characterization. A laboratory designed, for example, to address influenza surveillance (Layne et al., 2001) could be dual use: Not only would it enhance public health by providing more accurate and timely information about the emergence of novel influenza strains, but it could also provide surge capacity to detect other agents if outbreaks occurred as a result of a terrorist attack. Continued development of effective networks of such referral laboratories (private, academic, local, state, and federal) is thus vital.

It should be noted that the first suspicion of the outbreaks of anthrax and of West Nile virus came not from sophisticated computer technology but from thoughtful and perceptive physicians. Tools to help all health professionals make the appropriate inferences from small numbers of patients must be developed so that the likelihood of missing a new outbreak is markedly reduced. Principal responsibility for this work should rest with CDC, NIH, and DOD.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement