proceed in parallel on nonpathogenic bacteria and viruses, where many of the molecular mechanisms essential to our understanding of pathogenic organisms can most readily be deciphered. For example, new antibiotic discovery is dependent on an understanding of fundamental cellular mechanisms that are held in common among bacterial pathogens and nonpathogens. Careful oversight of experiments with pathogenic organisms is essential to ensure that they are not in violation of the Biological Weapons Convention of 1972.3

Recommendation 3.7: Expand investigations into the pathogenesis of infectious agents. Review the state of knowledge on the mechanisms of pathogenesis of all bioterrorist agents and of host responses to them, and initiate an action plan to conduct laboratory research using the latest molecular biology tools. This research will enhance understanding of the points at which these threats are most susceptible to useful intervention and will help identify new targets for developing diagnostics, drugs, and vaccines.

Microbial Forensics and Analysis of Trace Evidence

The overall lack of knowledge about how to respond to a given attack, together with the lack of intelligence information to help identify the organisms or chemical agents used in an attack, presents major vulnerabilities. But the importance of microbiological forensics in reducing these vulnerabilities was largely overlooked until the recent outbreak of anthrax. Its importance is that the sophisticated scientific and organizational mechanisms of forensics can be the means for determining the states or persons responsible for the attack and for formulating strategies to deter future attacks (Cummings and Relman, 2002).

The U.S. criminal justice, national security, public health, and agricultural communities have more than adequately demonstrated that physical evidence and subsequent forensic investigations are crucial to the investigation of a crime. Similarly, preventing the use of biological weapons, responses to their use, and adequate defenses against them depend in large part on the ability of forensic analyses to attribute (or exclude) the source of a material with a high degree of scientific certainty. The ability to characterize biological weapons might also contribute to deterrence. But although advances have been made in forensics for specific biological agents that may pose a threat, a far more aggressive, compre-

3  

From the Web site of the Harvard Sussex Program on CBW Armament and Arms Limitation: “The Harvard Sussex Program on CBW Armament and Arms Limitation, with advice from an international group of legal authorities, has prepared a draft convention that would make it a crime under international law for any person knowingly to develop, produce, acquire, retain, transfer or use biological or chemical weapons or knowingly to order, direct or render substantial assistance to those activities or to threaten to use biological or chemical weapons.” More information is available online at <http://www.fas.harvard.edu/~hsp/cbwcrim.html>.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement