hensive, and coordinated R&D program is needed. Such a program could then lead to fully tested forensic capabilities for all known biological agents that might be used in an attack.

Lessons should be drawn from the forensic community’s experience with human DNA over the past few decades, and alternative approaches to microbial forensics should also be explored. For example, knowledge of microorganisms, the methods used to profile them, and the responses of mammals (particularly humans, domesticated species, and sentinel species) to infections with these microorganisms can be used to determine whether an attack with a biological agent can be effectively correlated with a particular place, event, process, or time. Biological trace evidence, microchemical analysis (analysis of information about the agent carried along with the biological weapon during manufacture, storage, handling, and release), and the feasibility of using tagged organisms should be comprehensively investigated to determine their value in the characterization and comparison of the biological agents used in different weapons. Many in the biological warfare defense community believe that it should be possible to use a combination of DNA sequence information (occurring naturally) and/or deliberately introduced additional DNA sequences (stegnographic tags) to uniquely mark and identify all known pathogenic species. In this way, it may eventually prove possible to assign a unique code to every strain and variant, which would help in forensics, attribution, and defense. Such tags might even be encrypted.

Recommendation 3.8: Develop and coordinate bioterrorism forensics capabilities. Federal agencies with missions in defense and national security should lead in establishing this new multidisciplinary, multilayered field. A comprehensive study should be performed to determine the capabilities of and needs for bioterrorism forensics, and an integrated national strategy and plan formulated.

Investments and outcomes in the new field of bioterrorism forensics should be fully coordinated among agencies, with the program design, implementation, management, and oversight involving those agencies that actually have expertise in relevant sciences—including, of course, forensic science. The new field should cover human, animal, and plant pathogens. The information resident in the genomes and proteomes of organisms should be fully exploited, as should trace materials and chemical evidence associated with those organisms.

The strategic objective of a bioterrorism forensics program is to establish systems for the high-resolution analysis and specific identification of all materials and substances used (or intended for use) in bioterrorism. Although the committee recognizes the extreme difficulty of the task, the desired outcome is the absolute attribution of a biological weapon to its source—the identification of persons, places, processes, or instruments involved in the attack. The ability to substantially reduce the number of possible sources or individuals involved in bioterrorism, and the ability to completely exclude the possibility of an act of



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement