deploy the capability to use genomics to rapidly identify engineered mutations or altered virulence factors, create a generic platform to develop a vaccine against recombinant pathogens, and employ streamlined testing and regulatory processes to assure adequate efficacy and safety while expediting delivery.

Improvement and Testing of Environmental and Personal Protective Equipment

As described in Chemical and Biological Terrorism (IOM, 1999), personal protective equipment (PPE) includes clothing and respiratory apparatus designed to shield an individual from chemical, biological, and physical hazards. Availability (and even knowledge of availability) of such devices can reduce anxiety among first responders, health-care providers, and potential victims. In general, PPE is more effective against chemical agents, because biological agent incidents are not likely to be evident until well after release of the agent.

Protective methods aimed at preventing the pathogen from entering the body are usually physical rather than biological and do not depend on the detailed structure of the pathogen. Available filtering methods depend only on particle size. Like most physical methods, filtering methods available today have the characteristic that they are not 100 percent effective, but they are able to sharply reduce the number of casualties. What is remarkable is that a capability exists based on existing products that can be put into service rapidly. HVAC filters in large buildings can be upgraded at minimal cost (see Chapter 8); other similar filtering devices can be used in the home. Simple cheap masks, about the size of a folded handkerchief, are available and probably provide a high degree of protection. These devices must be tested by government agencies and information must be provided to citizens about their effectiveness.

An array of equipment currently exists (e.g., gloves, gowns, masks, eye protectors, respirators, protective suits), but technical problems remain—for example, heat stress in suits, permeable respirators, and difficulty of use. Also, there is no uniform testing standard for some of this equipment. In particular, testing is needed for antipathogen devices in order to distinguish personal protective equipment that is truly protective from items that generate a false sense of security (and that could increase people’s risks by unknowingly putting them in harm’s way).

There is also a need for research on environmental protection devices that safeguard buildings and homes from biological and chemical-aerosol threats. For example, less expensive HEPA (high-efficiency particulate-arresting) filters for heating, ventilating, and air-conditioning systems could provide a real defense against terrorist attack on buildings and landmarks; they could also prevent exploitation of ventilation systems by terrorists. Such research might have non-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement