and used in large quantities. Chemical warfare agents (such as nerve and blister agents) developed to have extremely high toxicities have been incorporated into a variety of military weapons. These chemical weapons could become available to terrorists through purchase or theft. Some of the chemical agents themselves are not difficult for individuals or organized groups to make.

In principle a number of technologies can be brought to bear for the rapid detection and characterization of a chemical attack, or for detecting explosives before they are used. Large investments have been made in research on sensor technologies, but to date the number of effective fielded systems developed remains comparatively small. If sensor research is to move forward efficiently, mechanisms to focus and exploit the highly fragmented array of existing research and development programs will be needed. A new program should be created to focus and coordinate research and development related to sensors and sensor networks, with an emphasis on the development of fielded systems. This program should build on relevant sensor research under way at agencies throughout the federal government.

Research programs on sensor technologies are needed to continue the search for promising new principles on which better sensors might be based. For example, mass spectroscopy offers the possibility of very rapid and specific identification of volatile agents. Also, basic research on how animals accomplish both detection and identification of trace chemicals could yield new concepts that allow us to manufacture better sensor systems and reduce our dependence on trained dogs, which currently are the best broad-spectrum high-sensitivity sensory systems.

Toxic chemicals (or infectious agents) could be used by terrorists to contaminate food production facilities or water supplies. Although a good deal of attention has been paid to ensuring safety and purity throughout the various stages of food production, processing, and distribution, protecting the food supply from intentional contamination has not been a major focus of the U.S. food industry. The FDA should develop criteria for quantifying hazards in order to define the level of risk for various kinds of food-processing facilities. The results could be used to determine the minimal level of protection required for making each type of facility secure. The FDA should also act promptly to extend the current quality control approach (Hazard Analysis and Critical Control Point methodology) so that it might be used to deal effectively with deliberate contamination of the food supply.

One of the best ways to secure the safety of the water supply is to ensure an adequate residual concentration of disinfectant (usually chlorine) downstream of water treatment plants, although more information is needed to be able to do this well. The Environmental Protection Agency should direct additional research on determining the persistence of pathogens, chemical contaminants, and other toxic materials in public water supplies in the presence of residual chlorine.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement