a significant increase in the performance of eighth-grade black students in mathematics (NCES, 2000).

Similar information comes from the National Assessment of Educational Progress (NAEP). In the 1996 NAEP, less than one-third of all U.S. students in grades 4, 8, and 12 performed at or above the “proficient” achievement level in mathematics (Reese et al., 1997) or science (National Assessment Governing Board (NAGB), 2001). Although the recently released NAEP 2000 results for mathematics indicate that performance of students in grades 4 and 8 has improved significantly over the last decade (the results for grade 12 were mixed), once again less than a third of all students performed at or above the “proficient” achievement level (U.S. Department of Education, 2001). In science, the results “show no significant changes in grades 4 and 8, and a decline in performance at grade 12 since 1996” (U.S. Department of Education, 2002).

Four decades after Presidents Eisenhower and Kennedy made science education their top priority for American education and a decade after President George H.W. Bush, the nation’s governors, and business leaders declared, “[b]y the Year 2000 . . . United States students will be first in the world in mathematics and science achievement” (U.S. Department of Education, 2000), the country is still struggling to find ways to lead children to perform at high levels in science and mathematics. The lackluster performance of U.S. students in science and mathematics has many causes, and it is not the purpose of this report to review them save for two: (1) K-12 science, mathematics, and technology education suffers from critical shortages of qualified teachers, and (2) there is inadequate support for teachers’ professional development, for effective curriculum development, and for strengthening connections between K-12 education and higher or informal education.

At the other end of the spectrum of U.S. education, the nation has an outstanding record in producing some of the world’s most renowned scientists, mathematicians, and engineers, as well as a large number of highly qualified and productive doctorates. Yet several recent studies indicate that the number of postdoctoral fellows in the United States has been growing and that they, as well as PhDs who do not undertake postdoctoral work, have experienced difficulty in finding permanent careers in either academia or industry (National Research Council (NRC), 1998, 2000c). Although the situation is most pronounced in the biological sciences, significant numbers of PhDs in other scientific fields also report disappointment in their prospects for finding careers as university faculty (NRC, 2000c).



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement