The Sun to the Earth—and Beyond

A Decadal Research Strategy in Solar and Space Physics

Solar and Space Physics Survey Committee

Committee on Solar and Space Physics

Space Studies Board

Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, D.C. www.nap.edu



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
The Sun to the Earth—and Beyond A Decadal Research Strategy in Solar and Space Physics Solar and Space Physics Survey Committee Committee on Solar and Space Physics Space Studies Board Division on Engineering and Physical Sciences NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

OCR for page R1
THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by Contract NASW 96013 and NASW 01001 between the National Academy of Sciences and the National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration Purchase Order No. 40-AA-NR-111308, National Science Foundation Grant No. ATM-0109283, Office of Naval Research Grant No. N00014-01-1-0753, and Air Force Office of Scientific Research Purchase Order No. FQ8671-0101168. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors. International Standard Book Number 0-309-08509-8 (Book) International Standard Book Number 0-309-50800-2 (PDF) Library of Congress Control Number 2003101592 Cover: The background photo is of the aurora borealis as viewed from the vicinity of Fairbanks, Alaska. The three figures in the inset show the magnetically structured plasma of the Sun’s million-degree corona (left); the plasmasphere, a cloud of low-energy plasma that surrounds Earth and co-rotates with it (top right); and an artist’s conception of Jupiter’s inner magnetosphere, with the Io plasma torus and the magnetic flux tubes that couple the planet’s upper atmosphere with the magnetosphere. Ground-based aurora photo courtesy of Jan Curtis; coronal image courtesy of the Stanford-Lockheed Institute for Space Research and NASA; plasmasphere image courtesy of the IMAGE EUV team and NASA; rendering of the jovian magnetosphere courtesy of J.R. Spencer (Lowell Observatory). Copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, D.C. 20055, (800) 624-6242 or (202) 334-3313 in the Washington metropolitan area. Internet, http://www.nap.edu Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, NW Washington, DC 20001 Copyright 2003 by the National Academy of Sciences. All rights reserved. Printed in the United States of America

OCR for page R1
THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council. www.national-academies.org

OCR for page R1
RECENT REPORTS OF THE SPACE STUDIES BOARD Satellite Observations of the Earth’s Environment: Accelerating the Transition of Research to Operations (2003) Assessment of the Usefulness and Availability of NASA’s Earth and Space Mission Data (2002) Factors Affecting the Utilization of the International Space Station for Research in the Biological and Physical Sciences (prepublication) (2002) Life in the Universe: An Assessment of U.S. and International Programs in Astrobiology (prepublication) (2002) New Frontiers in the Solar System: An Integrated Exploration Strategy (prepublication) (2002) Review of NASA’s Earth Science Enterprise Applications Program Plan (2002) “Review of the Redesigned Space Interferometry Mission (SIM)” (2002) Safe on Mars: Precursor Measurements Necessary to Support Human Operations on the Martian Surface (2002) Toward New Partnerships in Remote Sensing: Government, the Private Sector, and Earth Science Research (2002) Using Remote Sensing in State and Local Government: Information for Management and Decision Making (prepublication) (2002) Assessment of Mars Science and Mission Priorities (prepublication) (2001) The Mission of Microgravity and Physical Sciences Research at NASA (2001) The Quarantine and Certification of Martian Samples (prepublication) (2001) Readiness Issues Related to Research in the Biological and Physical Sciences on the International Space Station (2001) “Scientific Assessment of the Descoped Mission Concept for the Next Generation Space Telescope (NGST)” (2001) Signs of Life: A Report Based on the April 2000 Workshop on Life Detection Techniques (prepublication) (2001) Transforming Remote Sensing Data into Information and Applications (2001) U.S. Astronomy and Astrophysics: Managing an Integrated Program (2001) Copies of these reports are available free of charge from: Space Studies Board The National Academies 500 Fifth Street, NW, Washington, DC 20001 (202) 334-3477 ssb@nas.edu www.nationalacademies.org/ssb/ssb.html     NOTE: Listed according to year of approval for release.

OCR for page R1
SOLAR AND SPACE PHYSICS SURVEY COMMITTEE LOUIS J. LANZEROTTI, Lucent Technologies, Chair ROGER L. ARNOLDY, University of New Hampshire FRAN BAGENAL, University of Colorado at Boulder DANIEL N. BAKER, University of Colorado at Boulder JAMES L. BURCH, Southwest Research Institute JOHN C. FOSTER, Massachusetts Institute of Technology PHILIP R. GOODE, Big Bear Solar Observatory RODERICK A. HEELIS, University of Texas, Dallas MARGARET G. KIVELSON, University of California, Los Angeles WILLIAM H. MATTHAEUS, University of Delaware FRANK B. McDONALD, University of Maryland EUGENE N. PARKER, University of Chicago, Professor Emeritus GEORGE C. REID, University of Colorado at Boulder ROBERT W. SCHUNK, Utah State University ALAN M. TITLE, Lockheed Martin Advanced Technology Center ARTHUR CHARO, Study Director WILLIAM S. LEWIS,1 Consultant THERESA M. FISHER, Senior Program Assistant 1   On temporary assignment from Southwest Research Institute.

OCR for page R1
PANEL ON THE SUN AND HELIOSPHERIC PHYSICS JOHN T. GOSLING, Los Alamos National Laboratory, Chair ALAN M. TITLE, Lockheed Martin Advanced Technology Center, Vice Chair TIMOTHY S. BASTIAN, National Radio Astronomy Observatory EDWARD W. CLIVER, Air Force Research Laboratory JUDITH T. KARPEN, Naval Research Laboratory JEFFREY R. KUHN, University of Hawaii MARTIN A. LEE, University of New Hampshire RICHARD A. MEWALDT, California Institute of Technology VICTOR PIZZO, NOAA Space Environment Center JURI TOOMRE, University of Colorado at Boulder THOMAS H. ZURBUCHEN, University of Michigan PANEL ON SOLAR WIND AND MAGNETOSPHERE INTERACTIONS CHRISTOPHER T. RUSSELL, University of California, Los Angeles, Chair JOACHIM BIRN, Los Alamos National Laboratory, Vice Chair BRIAN J. ANDERSON, Johns Hopkins University JAMES L. BURCH, Southwest Research Institute JOSEPH F. FENNELL, Aerospace Corporation STEPHEN A. FUSELIER, Lockheed Martin Advanced Technology Center MICHAEL HESSE, NASA Goddard Space Flight Center WILLIAM S. KURTH, University of Iowa JANET G. LUHMANN, University of California, Berkeley MARK MOLDWIN, University of California, Los Angeles HARLAN E. SPENCE, Boston University MICHELLE F. THOMSEN, Los Alamos National Laboratory PANEL ON ATMOSPHERE-IONOSPHERE-MAGNETOSPHERE INTERACTIONS MICHAEL C. KELLEY, Cornell University, Chair MARY K. HUDSON, Dartmouth College, Vice Chair DANIEL N. BAKER, University of Colorado at Boulder THOMAS E. CRAVENS, University of Kansas TIMOTHY J. FULLER-ROWELL, University of Colorado at Boulder MAURA E. HAGAN, National Center for Atmospheric Research UMRAN S. INAN, Stanford University TIMOTHY L. KILLEEN, National Center for Atmospheric Research CRAIG KLETZING, University of Iowa

OCR for page R1
JANET U. KOZYRA, University of Michigan ROBERT LYSAK, University of Minnesota GEORGE C. REID, University of Colorado at Boulder HOWARD J. SINGER, NOAA Space Environment Center ROGER W. SMITH, University of Alaska PANEL ON THEORY, MODELING, AND DATA EXPLORATION GARY P. ZANK, University of California, Riverside, Chair DAVID G. SIBECK,1 NASA Goddard Space Flight Center, Vice Chair SPIRO K. ANTIOCHOS, Naval Research Laboratory RICHARD S. BOGART, Stanford University JAMES F. DRAKE, JR., University of Maryland ROBERT E. ERGUN, University of Colorado at Boulder JACK R. JOKIPII, University of Arizona JON A. LINKER, Science Applications International Corporation WILLIAM LOTKO, Dartmouth College JOACHIM RAEDER, University of California, Los Angeles ROBERT W. SCHUNK, Utah State University PANEL ON EDUCATION AND SOCIETY RAMON E. LOPEZ, University of Texas, El Paso, Chair MARK ENGEBRETSON, Augsburg College, Vice Chair FRAN BAGENAL, University of Colorado CRAIG DEFOREST, Southwest Research Institute PRISCILLA FRISCH, University of Chicago DALE E. GARY, New Jersey Institute of Technology MAUREEN HARRIGAN, Agilent Technologies ROBERTA M. JOHNSON, National Center for Atmospheric Research STEPHEN P. MARAN, NASA Goddard Space Flight Center TERRANCE ONSAGER, NOAA Space Environment Center 1   Johns Hopkins University Applied Physics Laboratory until summer 2002.

OCR for page R1
COMMITTEE ON SOLAR AND SPACE PHYSICS JAMES L. BURCH, Southwest Research Institute, Chair JAMES F. DRAKE, University of Maryland STEPHEN A. FUSELIER, Lockheed Martin Advanced Technology Center MARY K. HUDSON, Dartmouth College MARGARET G. KIVELSON, University of California, Los Angeles CRAIG KLETZING, University of Iowa FRANK B. McDONALD, University of Maryland EUGENE N. PARKER, University of Chicago, Professor Emeritus ROBERT W. SCHUNK, Utah State University GARY P. ZANK, University of California, Riverside ARTHUR CHARO, Study Director THERESA M. FISHER, Senior Program Assistant     NOTE: Members listed are those who served during the survey study period in 2001-2002.

OCR for page R1
SPACE STUDIES BOARD JOHN H. McELROY, University of Texas at Arlington (retired), Chair ROGER P. ANGEL, University of Arizona JAMES P. BAGIAN, Veterans Health Administration’s National Center for Patient Safety ANA P. BARROS, Harvard University RETA F. BEEBE, New Mexico State University ROGER D. BLANDFORD, California Institute of Technology JAMES L. BURCH, Southwest Research Institute RADFORD BYERLY, JR., University of Colorado at Boulder ROBERT E. CLELAND, University of Washington HOWARD M. EINSPAHR, Bristol-Myers Squibb Pharmaceutical Research Institute STEVEN H. FLAJSER, Loral Space and Communications Ltd. MICHAEL FREILICH, Oregon State University DON P. GIDDENS, Georgia Institute of Technology/Emory University RALPH H. JACOBSON, The Charles Stark Draper Laboratory (retired) MARGARET G. KIVELSON, University of California, Los Angeles CONWAY LEOVY, University of Washington BRUCE D. MARCUS, TRW, Inc. (retired) HARRY Y. McSWEEN, JR., University of Tennessee GEORGE A. PAULIKAS, The Aerospace Corporation (retired) ANNA-LOUISE REYSENBACH, Portland State University ROALD S. SAGDEEV, University of Maryland CAROLUS J. SCHRIJVER, Lockheed Martin ROBERT J. SERAFIN, National Center for Atmospheric Research MITCHELL SOGIN, Marine Biological Laboratory C. MEGAN URRY, Yale University PETER VOORHEES, Northwestern University J. CRAIG WHEELER, University of Texas at Austin JOSEPH K. ALEXANDER, Director

OCR for page R1
This page in the original is blank.

OCR for page R1
Preface The Sun to the Earth—and Beyond: A Decadal Research Strategy in Solar and Space Physics is the product of an 18-month effort that began in December 2000, when the National Research Council (NRC) approved a study to assess the current status and future directions of U.S. ground- and space-based programs in solar and space physics research. The NRC’s Space Studies Board and its Committee on Solar and Space Physics organized the study, which was carried out by five ad hoc study panels and the 15-member Solar and Space Physics Survey Committee, chaired by Louis J. Lanzerotti, Lucent Technologies. The work of the panels and the committee was supported by the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the Office of Naval Research (ONR), and the Air Force Office of Scientific Research (AFOSR). The Sun to the Earth—and Beyond is the report of the Solar and Space Physics Survey Committee. It draws on the findings and recommendations of the five study panels, as well as on the committee’s own deliberations and on previous relevant NRC reports. The report identifies broad scientific challenges that define the focus and thrust of solar and space physics research for the decade 2003 through 2013, and it presents a prioritized set of missions, facilities, and programs designed to address those challenges. In preparing this report, the committee has considered the technologies needed to support the research program that it recommends as well as the policy and programmatic issues that influence the conduct of solar and space physics research. The committee has also paid particular attention to the applied aspects of solar and space physics—to the important role that these fields play in a society whose increasing dependence on space-based technologies renders it ever more vulnerable to “space weather.” The report discusses each of these important topics—technology needs, applications, and policy—in some detail. The Sun to the Earth—and Beyond also

OCR for page R1
discusses the role of solar and space physics research in education and examines the productive cross-fertilization that has occurred between solar and space physics and related fields, in particular astrophysics and laboratory plasma physics. Each of the five study panels was charged with surveying its assigned subject area and with preparing a report on its findings. The first three panels focused on the important scientific goals within their respective disciplines and on the missions, facilities, programs, technologies, and policies needed to achieve them. In contrast, the Panel on Theory, Modeling, and Data Exploration addressed basic issues that transcend disciplinary boundaries and that are relevant to all of the subdisciplines of solar and space physics. The Panel on Education and Society examined a variety of issues related to both formal and informal education, including the incorporation of solar and space physics content in science instruction at all levels, the training of solar and space physicists at colleges and universities, and public outreach. The reports of the panels are published in a separate volume titled The Sun to the Earth—and Beyond: Panel Reports (2003, in press). In addition to the input from the five study panels, the committee also received information at a 2-day workshop convened in August 2001 to examine in detail issues relating to the transition from research models to operational models. Participants in the workshop included members of the committee and representatives from the Air Force, the Navy, NOAA, NSF, NASA, the U.S. Space Command, academia, and the private sector. The committee undertook its work intending to provide a community assessment of the present state and future directions of solar and space physics research. To this end, the committee and the panels engaged in a number of efforts to ensure the broad involvement of all segments of the solar and space physics communities. These efforts included town-meeting-like events held at the May 2001 joint meeting of the American Geophysical Union (AGU) and the American Astronomical Society’s (AAS’s) Solar Physics Division1 and at spring and summer 2001 workshops of the following programs: International Solar-Terrestrial Physics (ISTP), Solar, Heliospheric, and Interplanetary Environment (SHINE), Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR), and Geospace Environment Modeling (GEM). Each of these outreach events was well attended 1   The AGU and the Solar Physics Division of the AAS are the two principal scientific organizations representing the solar and space physics community.

OCR for page R1
and provided the committee and panels with valuable guidance, suggestions, and insights into the concerns of the solar and space physics community. Additional community input came from presentations on science themes, missions, and programs at panel meetings, from direct communication with individual panel and committee members by phone and e-mail, and through Web sites and Web-based bulletin boards established by two of the panels. Reports in the electronic newsletters of the AGU’s Space Physics and Aeronomy section and of the AAS’s Solar Physics Division kept those communities informed of the progress of the study and encouraged their continued involvement in the study process. Each of the study panels met at least twice during the spring and summer of 2001. The Panel on the Sun and Heliospheric Physics and the Panel on Education and Society met three times. The committee met five times, three times in 2001 and twice in 2002. The panel chairs and vice chairs participated in two of those meetings, during which they presented their panels’ recommendations and received comments and suggestions from the committee. The final set of scientific and mission, facility, and program priorities and other recommendations was established by consensus at the committee’s last meeting, in May 2002. The committee’s final set of priorities and recommendations does not include all of the recommendations made by the study panels, although it is consistent with them.2 Each panel worked diligently to identify the compelling scientific questions in its subject area and to set program priorities to address these questions. All of the recommendations offered by the panels merit support; however, the committee took as its charge the provision of a strategy for a strong, balanced national program in solar and space physics for the next decade that could be carried out within what is currently thought to be a realistic resource envelope. Difficult choices were inevitable, but the recommendations presented in this report reflect the committee’s best judgment, informed by the work of the panels and discussions with the scientific community, about which programs are most important for developing and sustaining the solar and space physics enterprise. This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s Report Review Committee. The purpose of this independent review is to provide candid and 2   The recommendations of each panel can be found in the companion volume to this report, The Sun to the Earth—and Beyond: Panel Reports, 2003, in press.

OCR for page R1
critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: Claudia Alexander, California Institute of Technology, Lewis Allen, California Institute of Technology (retired), George Field, Harvard University, Peter Gilman, National Center for Atmospheric Research, Gerhard Haerendel, International University, Bremen, Germany, Thomas Hill, Rice University, W. Jeffrey Hughes, Boston University, Ralph Jacobson, The Charles Stark Draper Laboratory (retired), Robert Lin, University of California, Berkeley, Nelson Maynard, Mission Research Corporation, Atsuhiro Nishida, Japan Society for the Promotion of Science, William Radasky, Metatech Corporation, and Donald Williams, Johns Hopkins University Applied Physics Laboratory. Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by Robert A. Frosch, Harvard University, and Lennard Fisk, University of Michigan. Appointed by the National Research Council, they were responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution. Louis J. Lanzerotti, Chair Solar and Space Physics Survey Committee

OCR for page R1
Contents     Executive Summary   1 1   Solar and Space Physics: Milestones and Science Challenges   22     The Domain of Solar and Space Physics,   23     Milestones: From Stonehenge to SOHO,   31     Science Challenges,   41     The Astrophysical Context,   49     Understanding Complex, Coupled Systems,   50     Notes,   50 2   Integrated Research Strategy for Solar and Space Physics   53     The Sun’s Dynamic Interior and Corona,   54     The Heliosphere and Its Components,   57     Space Environments of Earth and Other Solar System Bodies,   58     The Role of Theory and Modeling in Missions and Fundamental Space Plasma Physics,   64     Space Weather,   66     Roadmap to Understanding,   68     Deferred High-Priority Flight Missions,   78     Summary,   78     Notes,   80 3   Technology Development   81     Traveling to the Planets and Beyond,   83     Advanced Spacecraft Systems,   85     Advanced Science Instrumentation,   86     Gathering and Assimilating Data from Multiple Platforms,   88     Modeling the Space Environment,   89

OCR for page R1
    Observing Geospace from Earth,   90     Observing the Magnetic Sun at High Resolution,   91     Notes,   92 4   Connections Between Solar and Space Physics and Other Disciplines   93     Laboratory Plasma Physics,   94     Astrophysical Plasmas,   98     Atmospheric Science and Climatology,   104     Atomic and Molecular Physics and Chemistry,   108     Notes,   109 5   Effects of the Solar and Space Environment on Technology and Society   111     Challenges Posed by Earth’s Space Environment,   111     The National Space Weather Program,   115     Monitoring the Solar-Terrestrial Environment,   117     The Transition from Research to Operations,   120     Data Acquisition and Availability,   122     The Public and Private Sectors in Space Weather Applications,   124     Notes,   125 6   Education and Public Outreach   126     Educating Future Solar and Space Physicists,   127     Enhancing Education in Science and Technology,   136     Notes,   145 7   Strengthening the Solar and Space Physics Research Enterprise   147     A Strengthened Research Community,   147     Cost-Effective Use of Existing Resources,   150     Access to Space,   151     Interagency Cooperation and Coordination,   158     Facilitating International Partnerships,   159     Notes,   161

OCR for page R1
    Appendixes         A Statement of Task   165     B Acronyms and Abbreviations   168     C Biographical Information for Members of the Solar and Space Physics Survey Committee   171

OCR for page R1
This page in the original is blank.