at the research laboratory level. For example, NIH provides funds to the University of Massachusetts at Worcester to study the pathogenesis of dengue hemorrhagic fever. The bulk of the field research funded through this grant is carried out at the Armed Forces Research Institute of Medical Sciences, a subsidiary of WRAIR, and at other institutions in Thailand. MIDRP also provides funding for these projects. Although this collaboration is not specifically vaccine related, MIDRP considers it to be productive because it lays substantial groundwork that will be needed to field-test an anticipated vaccine against dengue virus.

MIDRP seeks input from academia through its peer review program for proposed research. Since 1999, all internal research funded by MIDRP at army and navy laboratories has been subject to review by external scientists.


DoD’s relationships with industry are complex. USAMRMC research laboratories interact with industry at the vaccine research and development stage (see Table 2-2 for examples) and at the vaccine procurement stage. Successful partnerships have been developed for the procurement of vaccines against influenza virus, Japanese encephalitis virus, and hepatitis A virus. Difficulties with procurement and maintenance have, however, halted or threatened the continued production of vaccines that are needed, such as vaccines against adenovirus, plague, and tetanus (Hoke, 2002). Over the years DoD has developed vaccines against diseases including Rift Valley fever, Argentine hemorrhagic fever, eastern equine encephalitis, western equine encephalitis, and Venezuelan equine encephalitis for which no commercial manufacturers have been identified.

Vaccines developed or marketed by foreign manufacturers for locally endemic diseases may be of use to DoD from time to time (e.g., the vaccine against Japanese encephalitis virus). Other vaccine products (e.g., the vaccine against tick-borne encephalitis) have followed or are following similar development and marketing paths but have not yet been licensed.

Also of note are instances in which a vaccine developed by the Army might have international use that is greater than its direct use to the DoD (e.g., Rift Valley fever). A 1990 analysis suggests that nearly 80 percent of the difference in disease burden between the poorest and richest 20 percent of the world’s population, in terms of death and disability-adjusted years, was attributable to communicable disease (Widdus, 2001). Many of the vaccines developed to protect deployed U.S. forces may also be of benefit to the world’s poorest populations, perhaps compelling DoD interest in a wider range of vaccine development efforts than might be dictated by market forces alone. The committee observes that, overall, the availability of a vaccine for military use is subject to many complex and changeable interests within—and external to—DoD.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement