ADVANTAGES OF DOMESTIC ANIMALS FOR COMPARATIVE GENOMICS

For researchers doing comparative genomics and comparative proteomics, domestic animals have one strong advantage over most other species: there is a long history of studying these animals. Scientists are familiar with their development, their resistance to disease, and determining how to work experimentally with them in various ways. For example, Lewin said, “Almost every human in-vitro fertilization fertility clinic employs methods that were first developed for cattle and sheep. Artificial insemination, embryo transfer, freezing semen, and sexing were all first developed for use in cattle and sheep. Furthermore, if you look at the species in which cloning has been most successful, it’s actually in the ruminants [cattle, sheep, and related animals]. So application of functional genomic technology to early mammalian development using the cow and the sheep is going to be an extremely important tool to us in our understanding the early events in nuclear reprogramming and what causes embryos to live or die past a certain point, prior to and after implantation.”

As a result of all the research done on domestic animals over the past several decades, decoding the genomes of cows, pigs, and others will have tremendous value for human medicine, Kappes said. “Comparative genomics will utilize a lot of the research background that we have done for the last forty or fifty years.”

One area in which the genomes of domestic animals could be particularly valuable, Lewin said, is biosecurity. “There is an awareness of the problem that we’re facing in risk to both human and animal health from zoonotic pathogens such as anthrax. Understanding the genes involved and creating a wider array of genomic tools is going to allow us to do the things that we need to do to protect not only the animals, but the human population as well.”

Such measures will include, Kappes said, learning about how the organisms that cause disease interact with their hosts and how they are transferred from host to host. “This is important for food security, food safety, [defensive] biologic warfare and understanding the interactions of the microbe and the animal. It is another area that we have not tapped very well and we will see a tremendous amount of information come out of that.”



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement