4
Present and Future Automotive Technologies

The tenth five-year plan envisions a future for China in which cars will be widely available to Chinese families and in which the Chinese automotive industry will grow into a “pillar industry” of China’s economy. Technology will play an important role in facilitating these goals.

This chapter describes the automotive technology options that are available today and some that may become available in the longer term, and it comments on their applicability to the development of China’s automotive industry and road transportation fleet. The choice of automotive technology is closely related to the kinds of materials and fuels selected, the economic impacts of the technology, and infrastructure requirements. The development of substantial transportation infrastructure, which requires major investments in land, influences in turn how land is developed. These issues are complex and variable, strongly depending on local values and conditions (see Chapter 6 for more discussion about the effects of motorization on land use).

Because the car is part of a much larger system, the overall costs and benefits of each technology choice must be assessed on a system basis. Such an assessment may reveal that the optimization of a single component may not be the best choice when the total system is considered. This life cycle analysis has been used in technology assessment studies worldwide and is appropriate for strategic decision making.

Although this chapter focuses on automotive technologies, many of the issues considered elsewhere in this report—automotive industry issues (Chapter 3), energy/fuels issues (Chapter 5), societal change (Chapter 6),



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 61
Personal Cars and China 4 Present and Future Automotive Technologies The tenth five-year plan envisions a future for China in which cars will be widely available to Chinese families and in which the Chinese automotive industry will grow into a “pillar industry” of China’s economy. Technology will play an important role in facilitating these goals. This chapter describes the automotive technology options that are available today and some that may become available in the longer term, and it comments on their applicability to the development of China’s automotive industry and road transportation fleet. The choice of automotive technology is closely related to the kinds of materials and fuels selected, the economic impacts of the technology, and infrastructure requirements. The development of substantial transportation infrastructure, which requires major investments in land, influences in turn how land is developed. These issues are complex and variable, strongly depending on local values and conditions (see Chapter 6 for more discussion about the effects of motorization on land use). Because the car is part of a much larger system, the overall costs and benefits of each technology choice must be assessed on a system basis. Such an assessment may reveal that the optimization of a single component may not be the best choice when the total system is considered. This life cycle analysis has been used in technology assessment studies worldwide and is appropriate for strategic decision making. Although this chapter focuses on automotive technologies, many of the issues considered elsewhere in this report—automotive industry issues (Chapter 3), energy/fuels issues (Chapter 5), societal change (Chapter 6),

OCR for page 61
Personal Cars and China environmental and health concerns (Chapter 7), and government policies (Chapter 8)—impinge on the choices of technology. China has already decided to require Chinese cars to meet European Emission Standard I (Euro I) now and Euro II standards by 2004–2005, based on state environmental protection regulations. The European Union1 has been enacting increasingly stringent emissions standards and now requires Euro III standards for its member nations, with Euro IV standards planned for implementation in Europe in 2005. State plans call for Chinese cars to attain the current Euro emissions standards by 2010. To meet the “wide availability” objective (that is, be affordable), the “China car” would have to cost about RMB60,000–80,000 ($7,200–9,600). Below this price range, the basic requirements for emissions control, performance, and safety cannot realistically be met. To make the automotive industry into a pillar of the economy, China will have to build its domestic capabilities for supplying materials, manufacturing components, and providing the design, assembly, maintenance, sales, credit, and other services that in turn will contribute to an increase in China’s gross domestic product (GDP). As discussed in Chapter 3, consolidation of the Chinese automotive industry and improvements in efficiency and cost competitiveness will take on new importance. Imported cars and components create unfavorable trade balances for China, whereas exports will expand opportunities for its automotive industry. Where technology choices bear on the future competitiveness of the industry, these factors must be considered carefully. Likewise, the China car should be highly fuel-efficient, because China’s domestic supply of petroleum fuel is limited at present and higher fuel demand can be met in the near future only through increased imports. This situation will affect China’s balance of trade over the next decade and perhaps longer. The China car also should be highly “clean” in emissions, because the air quality in many Chinese large cities ranks among the worst in the world. The situation is expected to worsen if vehicle tailpipe emissions are not controlled rigorously. The buyer of the China car will have a heavy influence on automobile design and sales. Successful auto companies select product attributes that maximize markets. Consumers typically want the most performance and convenience they can afford. Initially, most Chinese drivers will be located in urban areas or on rural and intercity roads that are not designed for high speeds. The performance requirements and fuel efficiency of cars are heavily influenced by the “driving cycles” used in designing and op- 1   Through rulemaking proposed by the European Union Council of Environmental Ministers and approved by the European Parliament.

OCR for page 61
Personal Cars and China erating the vehicle. In the United States, where motorists engage in a lot of high-speed highway driving, many cars are designed with large engines to enable passing and hill-climbing capability at high speed. But these cars have poor fuel efficiency at low speeds and continue to burn fuel at a high rate when idling in urban traffic jams. Cars designed specifically for urban driving cycles could be much more fuel-efficient under these conditions. For example, new technologies based on greater electrification of the car are being developed to switch the engine off during vehicle stops. This feature has the double benefit of reducing emissions and wasted fuel. The envisioned China car also will have to be highly reliable, easily serviceable, and rugged to accommodate China’s present road and maintenance infrastructure. Over the century of development of automobiles in member countries of the Organisation for Economic Co-operation and Development (OECD), governments and automakers continually responded to problems and applied the lessons learned to the development path. For example, pollution problems led to increasingly stringent emissions regulations; safety problems led to improved roadway designs, crashworthy vehicle designs, and safety features such as seat belts and air bags; and operational problems led to driver training and vehicle inspection programs. China, facing an anticipated period of rapid investment and growth for automobiles and the associated infrastructure of a decade or two rather than a century, will benefit from those lessons as well. The technology choices that must be made in China are constrained by the marketplace and by various government policies and regulations. With that in mind, this chapter will focus on technologies that seem to best fit the rapidly growing automotive industry in China over the next five years or so, and will examine them within the context of both their short- and long-term implications for the industry and consumers. The discussion of near-term technologies will be placed in the context of current expectations of government policies. The discussion of longer-term technologies will address those that could be important whether current government policies remain as they are or not. FLEET ISSUES FOR VEHICLE TECHNOLOGIES Emissions Control In view of the projected growth of China’s vehicle fleet, air quality issues in major urban areas are of great importance. As just noted, Chinese cars produced in 2004–2005 must meet Chinese emissions standards equivalent to the Euro II standards. China’s Technical Policy on Prevention and Control of Motor Vehicle Pollution states that emissions levels

OCR for page 61
Personal Cars and China FIGURE 4-1 Driving cycles for measuring emissions. NOTE: 20 miles per hour (mph) = 32 kilometers per hour (kph); 40 mph = 64 kph; 60 mph = 97 kph; 80 mph = 129 kph. should approach the international level of control around the year 2010 (Chinese State Environmental Protection Agency, 1999). Table 4-1 summarizes the principal elements of the existing U.S., Japanese, and European standards. Emissions control technologies to meet these standards are discussed later in this chapter. Vehicle emissions are the products of the incomplete combustion of propulsion fuels. Propulsion system efficiencies vary with output energy requirements, and different propulsion technologies achieve optimum efficiency under different conditions. In urban driving, conventional engines continue to run, using energy and producing emissions, even if a vehicle is stopped or moving slowly in traffic. Because any comparison of vehicle options must take into account the typical local driving conditions, when emissions standards are set they are based on a specified “driving cycle.” Figure 4-1 presents four examples of driving cycles specified by regulatory groups in the United States, Japan, and Europe.

OCR for page 61
Personal Cars and China TABLE 4-1 Examples of Emissions Standards in the United States, Japan, and Europe   Date of Implementation CO HC NOx PM U.S. Standards SI car 1997 3.4 g/mi 0.41 g/mi 0.40 g/mi N.S.     (2.1 g/km) (0.26 g/km) (0.25 g/km)   SI and diesel cars 2007 2.1 g/mi 0.09 g/mi 0.07 g/mi 1.01 g/mi     (1.3 g/km) (0.06 g/km) (0.04 g/km) (0.006 g/km) Japanese Standards SI car 2000 0.67 g/km 0.08 g/km 0.08 g/km N.S. Diesel car 2002 0.63 g/km 0.12 g/km 0.30 g/km 0.056 g/km European Standards Euro II SI car 1996 3.28 g/km 0.34 g/km 0.25 g/km N.S. Euro II diesel car 1996 1.06 g/km 0.19 g/km 0.73 g/km 0.10 g/km Euro III SI car 2000 2.30 g/km 0.20 g/km 0.15 g/km N.S. Euro III diesel car 2000 0.64 g/km 0.06 g/km 0.50 g/km 0.05 g/km Euro IV SI car 2005 1.00 g/km 0.10 g/km 0.08 g/km N.S. Euro IV diesel car 2005 0.50 g/km 0.05 g/km 0.25 g/km 0.025 g/km NOTE: CO = carbon monoxide; HC = hydrocarbons; NOx = nitrogen oxides; PM = particulate matter; SI = spark ignition; g/mi = grams per mile; g/km = grams per kilometer; N. S. = no specification. SOURCE: Yasuhira Daisho, Waseda University.

OCR for page 61
Personal Cars and China In the United States, emissions are set on a per mile basis using a combined urban-highway cycle. Japanese and European driving cycles are more similar to the U.S. urban driving cycle than to the U.S. highway driving cycle. A comparison of the urban driving cycles used in Japan (Figure 4-1c), Europe (Figure 4-1d), and the United States (Figure 4-1a) to measure emissions indicates that in the Japanese and European cycles more time is spent with the vehicle stopped, engine idling, than in the U.S. cycle, which has an higher average speed and less idling time. Figure 4-1b depicts the U.S. highway cycle that was used in combination with the U.S. city cycle to determine vehicle fuel economy (45 percent share of the highway cycle and 55 percent of the city cycle). When vehicles are operated only in urban environments where traffic constrains their rate of acceleration and maximum speed, users have modest expectations of vehicular performance in terms of acceleration and top speed. If users are able to drive vehicles on improved roads at high speeds with little competing vehicular traffic, their expectations for engine power and high-speed capability will rise. Because China has chosen the Euro emissions standards, it will have to measure emissions performance for the driving cycle that is established for the Euro system. In the future, however, China may choose to implement new standards, with a driving cycle and emissions standards suited to its specific environment. Energy Use and Fuel Economy The energy use of a vehicle fleet depends on the size, weight, type, and efficiency of vehicles in the fleet and on the driving conditions encountered in their use. Energy use includes not only the fuel consumed in operating the vehicle, but also the energy consumed in making the vehicle, producing and processing the fuel, and disposing of the vehicle at the end of its life. Life Cycle Assessment Anyone weighing the automotive technology options discussed later in this chapter would benefit from comparing alternative automotive technology systems over their full life cycle (see Figure 4-2, which depicts the steps in the life cycle of automotive technology from the production of the raw materials used to make the fuel and the vehicle through the vehicle’s useful life to its final disposition). Such an assessment would allow one to track the key parameters involved through each of these life cycle stages and assess the overall results as part of the technology selection process. For the vehicle, the major parameters of interest are: cost, performance, local emissions of air pollutants, greenhouse gas (GHG) emissions, and

OCR for page 61
Personal Cars and China FIGURE 4-2 Steps in the life cycle of automotive technology. SOURCE: Weiss et al. (2000). energy use. The vehicle also must have attributes that make it attractive to its purchasers and users over its lifetime, and it must meet established regulatory standards. Various recent studies have compared the technologies for clean, fuel-efficient cars (Office of Technology Assessment, 1995; Automotive Engineering, 1996; Sierra Research, 1997; Höhlein et al., 1998; Singh et al., 1998; Ogden et al., 1999; NRC, 2000; Pembina Institute, 2000; Weiss et al., 2000; GMC, 2001). Not all of these studies treat the full life cycle of comparable fuel/vehicle systems. For example, the U.S. Partnership for a New Generation of Vehicles (PNGV) program does not consider the fuel cycle in its performance goals or comparisons of vehicles (NRC, 2000). And the General Motors study does not provide information on the production costs of new vehicles, nor does it state detailed design assumptions about the vehicles evaluated. The results of the study by Weiss et al. (2000) are summarized here to illustrate the importance of a life cycle review. Beyond the organizations directly involved in producing fuels and vehicles are the vehicle purchasers and various levels of government. Those purchasing vehicles make their choices based largely on affordability, convenience, comfort, availability, and appearance. Local governments impose local zoning and safety codes; subnational governments issue planning, tax, and regional environmental regulations; and ultimately the national government is responsible for central investments in infrastructure, for national tax policies, and for the national trade, envi-

OCR for page 61
Personal Cars and China ronmental, safety, and other requirements that are applied to fuels and vehicles. In the life cycle assessment used here for illustrative purposes (Weiss et al., 2000), the starting point is a vehicle similar to a 1996 Toyota Camry. It is assumed that this vehicle, the baseline vehicle for the study, evolves forward to the year 2020 into a car of similar performance and capacity. The analysis is based on a U.S. Environmental Protection Agency (U.S. EPA) combined city-highway driving cycle. Various choices in technology are then considered, resulting in the following set of study cases: Baseline vehicle—the 2020 version of a car similar to a 1996 Toyota Camry, with a gasoline engine, 600 kilometer (km) refueling range, and some body lightweighting Advanced body vehicle—a similar car that is about 10 percent lighter than the baseline because of changes in materials and that costs about 10 percent more Advanced body, diesel (with both petroleum-based fuel and Fischer-Tropsch synthetic diesel fuel made from natural gas) Advanced body, hybrid—gasoline, diesel, or compressed natural gas (CNG) Advanced body, fuel cell hybrid—dependent on reforming gasoline, reforming methanol, or utilizing high-pressure hydrogen gas made from natural gas Advanced body, electric (requiring recharging every 400 km because of battery limitations). The comparisons that follow are based on these vehicle designs. But because forecasting technology some 20 years in the future involves some uncertainty, the forecasts here related to evolutionary and advanced body combustion engine cars are subject to underestimation or overestimation by about 10 percent; the hybrids by about 20 percent, and the fuel cell and electric vehicles by about 30 percent. The uncertainties are greater for the rapidly evolving technologies because of the possibilities of technological breakthroughs or the identification of unanticipated barriers. The study by Weiss et al. (2000) assumes a vehicle lifetime of 15 years and an annual distance traveled of 20,000 km. Life Cycle Energy Consumption Figure 4-3 shows the life cycle energy consumption, on a megajoule (MJ) per kilometer basis, of the various technology combinations evaluated. The top portion of each bar represents the energy equivalent of the fuel used by the vehicle in propulsion, the middle portion the energy used

OCR for page 61
Personal Cars and China FIGURE 4-3 Comparisons of life cycle energy use. NOTE: MJ/km = megajoule per kilometer; AB = advanced body; F-T = Fischer-Tropsch; CNG = compressed natural gas; FC = fuel cell; MeOH = methanol; H2 = hydrogen. SOURCE: Weiss et al. (2000). in producing that amount of fuel, and the bottom portion the energy used in the actual manufacture of the vehicle (embodied energy). For the cases studied, the energy involved in vehicle manufacture is a relatively small part of the life cycle energy use. For much smaller, more efficient vehicles, the embodied energy becomes a more significant factor. For petroleum fuels and natural gas, the energy required for fuel production is a relatively small part of total energy requirements (Figure 4-3). However, the energy associated with producing a synthetic fuel by a Fischer-Tropsch process adds substantially to life cycle energy use, which is related to GHG emissions as well. The energy production requirement for electric vehicles is based on the mix of energy sources and power generation efficiencies of the U.S. electricity supply. On that basis, the fuel cycle is the predominant energy requirement for the electric vehicle. Life Cycle Costs and Emissions Figure 4-4 presents similar comparative data, but it looks at total annual operating costs, new vehicle costs, and total GHG emissions. It is assumed that the vehicles would have to incorporate technology to meet

OCR for page 61
Personal Cars and China FIGURE 4-4 Life cycle comparisons of costs and carbon emissions. NOTE: Annual operating costs include amortized new vehicle costs and running costs as shown in Table 4-2. AB = advanced body; F-T = Fischer-Tropsch; CNG = compressed natural gas; FC = fuel cell; MeOH = methanol; H2 = hydrogen; gC/km = grams carbon per kilometer. SOURCE: Weiss et al. (2000). the 2020 U.S. emissions standards for local pollutants. The pattern of GHG emissions follows that of energy use for the petroleum fuel-based systems, but emissions are somewhat reduced for the CNG-fueled hybrid. GHG emissions for the hydrogen fuel cell and for the electric car are slightly higher than those for the gasoline hybrid, based on the U.S. electric sector average GHG emissions. Table 4-2 presents estimates of the annual operating costs for new U.S. vehicles based on fuel cost averages and vehicle fuel consumption. A flat fuel tax of $0.0033 (RMB0.027) per megajoule of fuel ($0.40 per gallon of gasoline equivalent) is used across all the fuel sources (this assumption is made so that tax policy does not affect relative results; taxation is a policy tool that may be used to influence the economic choice between technologies). A constant maintenance or other charge of $0.036 (RMB0.30) per kilometer for the various technologies is assumed to avoid introducing an additional bias. Total fixed costs are based on known fixed annual

OCR for page 61
Personal Cars and China TABLE 4-2 Vehicle Costs per Kilometer for Selected New Vehicle Options, 2020 (1997 U.S. dollars per kilometer)   Evolved Body Gasoline AB Gasoline AB Diesel AB Gasoline Hybrid AB Diesel Hybrid AB, CNG Hybrid AB Gasoline FC Hybrid AB Methanol FC Hybrid AB Hydrogen FC Hybrid AB Electric Total running costs 0.056 0.053 0.047 0.049 0.044 0.049 0.056 0.050 0.054 0.045 Fuel ex tax (percent of total) 0.014 (5%) 0.012 (4%) 0.007 (2%) FT=0.009 0.009 (3%) 0.005 (1%) FT=0.006 0.010 (3%) 0.014 (4%) 0.010 (3%) 0.015 (4%) 0.007 (2%) Fuel tax 0.006 0.005 0.004 0.004 0.003 0.003 0.006 0.004 0.003 0.002 Other (oil, tires, maintenance) 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 Total fixed costs 0.250 0.268 0.281 0.292 0.304 0.297 0.317 0.315 0.303 0.363 Insurance 0.050 0.052 0.053 0.056 0.057 0.056 0.057 0.057 0.057 0.063 License, excise tax, registration 0.020 0.022 0.023 0.024 0.025 0.024 0.026 0.026 0.025 0.030 Capital costs 0.180 0.194 0.205 0.212 0.222 0.217 0.234 0.232 0.221 0.270 Total costs 0.306 0.321 0.328 0.341 0.348 0.346 0.373 0.365 0.357 0.408 NOTE: AB = advanced body; FC = fuel cell; CNG = compressed natural gas; FT = Fischer-Tropsch. SOURCE: Weiss et al. ( 2000)

OCR for page 61
Personal Cars and China TABLE 4-5 Characteristics of Commercial and Prototype Hybrid Electric Vehicles HEV Type Status Curb Weight (lbs) Power Plant Type Engine Size (liters) Engine Power (hp) Battery Type Motor Peak (kW) Transmission Type CAFE (mpga) 0–60 Time (s) U.S. Prius Gasoline hybrid Commercial 2,765 SI I-4 1.5 70 NiMH 33 CVT 58 12.1 Honda Insight Gasoline hybrid Commercial 1,856 SI I-3 1.0 67 NiMH 10 M5 76 10.6 Ford Prodigyb Diesel hybrid Concept car 2,387 CIDI I-4 1.2 74 NiMH 16 A5 70 12.0 DC ESX3 Diesel hybrid Concept car 2,250 CIDI I-3 1.5 74 Li-ion 15 EMAT-6 72 11.0 GM Preceptc Diesel hybrid Concept car 2,590 CIDI I-3 1.3 59 NiMH 35 A4 80 11.5 a CAFE fuel economy rating represents combined 45/55 miles per gallon (mpg) highway/city fuel economy and is based on an unadjusted figure. b On the basis of the starter-generator rated 31 kilowatts (kW) for continuous, 8 kW for three minutes, and 35 kW for three seconds (s); 16 kW is assumed for a 12-second 0– 60 acceleration. c The front motor is 25 kW and rear motor 10 kW. Therefore, the total motor peak power is 35 kW. NOTE: HEV = hybrid electric vehicle; CAFE = Corporate Average Fuel Economy; SI = spark ignition; CIDI = compressed ignition direct injection; NiMH = nickel metal hydride; Li-ion = lithium-ion; CVT = continuously variable transmission; M5 = manual five gear; A5 = automatic five gaear; EMAT = electro- mechanical automatic transmission; hp = horsepower. SOURCES: U.S. Prius: EV News (2000); all HEVs except U.S. Prius: NRC ( 2000); Honda Insight: Automotive Engineering (1999); ESX3: Automotive Engineering (2000): GM Precept press release.

OCR for page 61
Personal Cars and China associated emissions and cost impacts were considered secondary in this context. It is important to understand to what extent the gains in fuel economy are actually achieved through the conventional technologies, on the one hand, and how much are obtained through “pure” hybrid technologies and systems, on the other. Four common elements that contribute to gains in fuel economy for these commercial and concept HEVs are: choice of high-efficiency diesel engines for the three PNGV hybrid vehicles aggressive load reduction measures that lower vehicle air and tire drag losses, as well as overall vehicle weight engine downsizing to utilize a smaller, more advanced onboard combustion engine, as well as implementation of a more advanced transmission system system electrification and hybridization to utilize electric power to optimize system efficiency, turning off the engine during idling, and provision of regenerative braking. It is not easy to estimate the fuel economy benefits of “pure” hybrid technologies. First, hybrid benefits depend strongly on the driving cycle. The fuel economy benefits of hybrid electric vehicles are much higher under stop-and-go traffic conditions than under free-flow highway driving conditions. Thus the fuel economy benefits of HEVs in China’s large cities should be higher than those in the United States. Second, there is no doubt that conventional technologies include all the measures in items 1 and 2 and that hybrid technology includes all the measures in item 4. It is less clear, however, how item 3 should be categorized, because hybrid technologies usually require synergies from conventional technologies to deliver the best benefits. It would then seem that the hybrid benefits are more than item 4 alone, but somewhat less than the combination of items 3 and 4 (An et al., 2001b; DeCicco et al., 2001). Figure 4-13 presents the improvement in U.S. fuel economy by each technology element for the selected HEVs. Issues Surrounding Fuel Cell Hybridization Uncertainties are associated with whether hybridization would benefit fuel cell vehicles (Table 4-6). In terms of system efficiency, unlike in internal combustion engines where the engine efficiency increases with the power demand, the efficiency of fuel cell stacks peaks at a low power point and decreases as power demand approaches either the maximum or

OCR for page 61
Personal Cars and China FIGURE 4-13 U.S. fuel economy (gasoline equivalent) through elements of dieselization, load reduction, engine downsizing, and hybrid optimization. SOURCE: An et al. (2001b). minimum level. For vehicles with onboard reformers, the efficiency of the reformer’s transient operation can differ dramatically from that of its steady-state operation. As for performance, the transient response time of fuel reformers is a critical issue and has a profound implication for the benefits of hybridization (the addition of batteries or other energy storage devices). In terms of system costs, the trade-off between the reduced cost associated with downsizing a fuel cell system and the added cost of batteries and other hybrid components should be assessed. The benefits and TABLE 4-6 Trade-offs for Hybridizing Fuel Cell Vehicles Trade-off Fuel Cell Vehicles Hybrid Fuel Cell/Battery Fuel cell stack efficiency High Reduced because of downsizing Regenerative braking None 10–20+ percent in urban driving Cold start Slow Rapid Specific weight (kilograms/kilowatt) High High to medium Price Fuel cell price high, but dropping rapidly Battery price relatively low, but not dropping as quickly as fuel cell Overall Long term, favorable Near to medium term, favorable   SOURCE: Society of Automotive Engineers (2001, 2002).

OCR for page 61
Personal Cars and China trade-offs of hybridizing fuel cell vehicles not only differ from those from hybridizing conventional internal combustion engine vehicles, but also differ among different kinds of fuel cell systems. Hybridization Summary In spite of the many advantages of the hybrid vehicle, hybrid technologies are still quite expensive and add up to 20 percent to the cost of a vehicle. Hybrid electric vehicles are many years from taking a significant market share from the conventional internal combustion engine vehicles. In turn, the economies of scale needed to reduce their cost disadvantage probably will not be realized for many years. In the meantime, some of the first steps toward hybrid technologies—the integrated starter-generator, for example—will begin to appear in commercial products. In the United States, expensive features such as hybridization are more likely to appear in higher-priced (or subsidized) vehicles before they make their way into the wider commercial markets. SYSTEM INTEGRATION AND MANUFACTURING The preceding sections have described the status of the major components of a modern automobile. In China, many car components are already being manufactured for assembly in local plants and for export. Moreover, local vendors are involved in technology transfer and improvement on the component level, although entry into the World Trade Organization (WTO) will create pressure on component manufacturers to be more cost-competitive. Yet car design requires sophisticated techniques for integrating all these components—and ultimately for satisfying customer requirements for performance, safety, comfort, and convenience— to produce a cost-competitive, reliable vehicle. The leading global automakers have had years of experience in producing and marketing cars, and they continue to refine their system design and integration skills in order to maintain or improve their competitive position in the marketplace. Consequently, these skills are considered highly proprietary and are carefully guarded. At present, China’s automotive industry is well behind global automotive industry leaders in design and system integration capabilities. China has some world-class auto production plants, but these rely on the expertise of foreign partners who are reluctant to transfer this expertise to their Chinese partners. If China is to compete in the future as a worldclass auto manufacturer, it must build expertise in these critical areas. In future joint ventures and similar partnerships with foreign automakers, it

OCR for page 61
Personal Cars and China will be important for the Chinese partner to demand training and full inclusion in design and integration activities—at least for cars that will be developed for the Chinese market. Because Chinese automakers are likely to better understand Chinese consumers and their buying patterns, foreign partners may be willing to relax proprietary concerns in the code-velopment of models that meet the needs of Chinese consumers. Yet under WTO such partners also can compete directly in Chinese markets. Therefore, the Chinese should be prepared to bring some special capabilities into partnerships in exchange for training and knowledge transfer. Manufacturing Implications World-class producers of vehicles must not only design high-quality vehicles, but also produce them in efficient facilities. In any discussion of manufacturing, it is useful to separate the vehicle assembly operations from the manufacture of major components such as engines and transmissions. Major components are normally manufactured in high-capacity, highly automated plants. Because a large fraction of the tools found in these facilities are made by a few worldwide machine tool manufacturers, any facilities built in China can possess the latest technologies. Furthermore, because of the high cost of the facilities, several vehicle manufacturers may use the same components purchased from external suppliers, allowing an economy of scale in production that benefits all participants. As noted in Chapter 3, component suppliers Robert Bosch, Engelhard, and Corning already have subsidiaries in China that are following this pattern. Whether the Chinese industry chooses to compete with the large component suppliers or to allow foreign manufacturers to dominate this part of the market is largely an economic issue and not one of technical capability. China has experience with vehicle assembly in modern plants, but these plants have been mostly ones transplanted from overseas through joint venture partners. Because the volumes for the Chinese car market will not at first be large for any single manufacturer, these facilities must be flexible enough to allow the assembly of more than one vehicle type. This flexible technology is just appearing in foreign facilities, but it is expected to find greater uses as the market continues to fracture into smaller niches. Besides, as just noted, the latest tools for an assembly plant can be purchased from the worldwide machine tool industry. Unfortunately, even having the latest tools in the most modern facilities does not guarantee efficient operation. Japanese manufacturers, through their highly developed “lean” manufacturing processes and through the colocation of major component and assembly plants, are able to assemble a vehicle in about half the number of worker-hours

OCR for page 61
Personal Cars and China characteristic of American manufacturers (Dassbach, 1994). Through years of sustained effort, Japanese manufacturers also have developed a reputation for the highest quality products. To compete worldwide, the Chinese automotive industry will need to develop the management capability to operate its factories in the most efficient manner while paying close attention to quality. China has a major asset in its intelligent, hard-working people, who provide skilled labor at wages that are low relative to the average in the member countries of the Organisation for Economic Co-operation and Development (OECD), but it will need to examine carefully its capability to manage that workforce in the most efficient manner. Choosing Competitive Technologies As discussed in Chapter 3, a variety of cars are already being produced successfully in China. Most of these employ foreign technology, adapted to some extent to meet special Chinese needs, through a variety of partnerships and joint ventures with Chinese companies. If the Chinese automotive industry wishes to compete in open international markets or to compete with products coming to China from these markets, it must find technologies or market niches in which it is able to compete successfully. In Figure 4-14, the estimates by Weiss et al. (2000) are replotted to show life cycle energy as a function of life cycle cost for the technologies considered. If China is to compete successfully in the manufacture of lower-cost cars, it would seem prudent to select technologies that do not start out with a potentially significant cost penalty. As shown in Figure 4-14, the overlap in the energy use and cost projections for technology alternatives is large, especially for the advanced technologies for which the uncertainty ranges are largest. These uncertainty ranges will be reduced over the next decade or so as advanced technologies mature from the present stage of development. Therefore, much more risk is associated with future competitiveness if major investments are made now by China to develop hydrogen fuel cell or electric cars, or even full hybrids, rather than in the future. A near-term focus on more conventional technologies still allows many opportunities for innovations that will enhance the competitiveness of a China car. APPENDIX: OTHER TYPES OF FUEL CELLS Of the many types of fuel cell, some are being developed for stationary power generation. These systems are more appropriate for steady-state operation because they require the maintenance of a special environ-

OCR for page 61
Personal Cars and China FIGURE 4-14 Estimated energy versus cost ranges for selected technologies per kilometer. NOTE: Shaded areas represented uncertainties in prediction; CNG = compressed natural gas. SOURCE: Weiss et al. (2002). ment. Thus such systems may not yet meet the rapid start-up requirement of an automobile and are likely to perform inefficiently in a lightly loaded automotive duty cycle. Descriptions of some of the fuel cells likely to find commercial uses over the next several decades follow: Phosphoric acid. This type of fuel cell, which is commercially available, is used mostly for stationary power sources. Phosphoric acid fuel cells generate electricity at more than 40 percent efficiency—and nearly 85 percent of the steam this fuel cell produces is used for cogeneration. Operating temperatures are in the vicinity of 400°F or 200°C. Molten carbonate. Molten carbonate fuel cells, which promise high fuel-to-electricity efficiencies, operate at about 1,200°F or 650°C. To date, molten carbonate fuel cells have been operated using hydrogen, carbon monoxide, natural gas, propane, landfill gas, marine diesel, and simulated coal gasification products. Molten carbonate fuel cells of 10 kW to 2 megawatts (MW) have been tested on a variety of fuels. Carbonate fuel cells for stationary applications have been successfully demonstrated in Japan and Italy. Solid oxide. Another highly promising fuel cell, the solid oxide fuel cell (SOFC), could be used in large, high-power applications, including

OCR for page 61
Personal Cars and China industrial and large-scale central electricity generating stations. Some researchers also foresee the use of solid oxide in motor vehicles and are developing fuel cell auxiliary power units with SOFCs. A solid oxide system usually uses a hard ceramic material instead of a liquid electrolyte, allowing operating temperatures to reach 1,800°F. Power-generating efficiencies could reach 60 percent. One type of SOFC uses an array of meter-long tubes, and other variations include a compressed disc that resembles the lid of a soup can. Tubular SOFC designs are closer to commercialization and are being produced by several companies. Demonstrations of tubular SOFC technology have produced as much as 220 kW. Still other fuel cells are not likely to be commercialized in the next few decades: Alkaline. Long used by the U.S. National Aeronautics and Space Administration (NASA) on space missions, these fuel cells can achieve power-generating efficiencies of up to 70 percent. They use alkaline potassium hydroxide as the electrolyte. Until recently, these fuel cells were too costly for commercial applications, but several companies are examining ways to reduce costs and improve operating flexibility. Direct methanol fuel cells. These cells are similar to the proton exchange membrane fuel cell (see the section Emerging Propulsion Technologies) in that they use a polymer membrane as the electrolyte. However, in the direct methanol fuel cell, the anode catalyst itself draws the hydrogen from the liquid methanol, eliminating the need for a fuel reformer. Efficiencies of about 40 percent are expected with this type of fuel cell, which would typically operate at a temperature of between 120° and 190°F or 50° and 90°C. Higher efficiencies are achieved at higher temperatures. Regenerative fuel cells. Still a very young member of the fuel cell family, regenerative fuel cells would be attractive as a closed-loop form of power generation, in conjunction with a solar power source. Solar power can be converted directly to electricity, but there may be applications where the energy losses associated with a regenerative fuel cell are justified. During solar collection, water is separated into hydrogen and oxygen by a solar-powered electrolyzer. The hydrogen and oxygen are then available to be fed into the fuel cell, which is able to generate electricity, heat, and water when direct solar power is not available. The water is then recirculated back to the solar-powered electrolyzer and the process begins again. NASA and others are currently conducting research on these types of fuel cells.

OCR for page 61
Personal Cars and China REFERENCES An, F., F. Stodolsky, and D. Santini. 1999. Hybrid Options for Light-Duty Vehicles. SAE Technical Paper No. 1999-01-2929. Society of Automotive Engineers. An, F., J. DeCicco, and M. Ross. 2001a. Assessing the Fuel Economy Potential of Light-Duty Vehicles . SAE Technical Paper No. 2001- 01FTT-31, SAE Special Publication (SP-1637) on New Energy Systems and Environmental Impacts. Society of Automotive Engineers. An, F., A. Vyas, J. Anderson, and D. Santini. 2001b. Evaluating Commercial and Prototype HEVs. SAE Technical Paper No. 2001-01-0951. Society of Automotive Engineers. An, F., D. Freidman, and M. Ross. 2002. Near-Term Fuel Economy Potential for Light-Duty Trucks. SAE Technical Paper No. 2002-01-1900. Society of Automotive Engineers. Ashley, S. 2001. Fuel cells start to look real. Automotive Engineering (March). Automotive Engineering. 1996. Life cycle analysis: Getting the total picture on vehicle engineering alternatives. (March):49–52. ———. 1999. ESX3. (October):55. ———. 2000. Dodge’s mild hybrid. (May):32. Chinese State Environmental Protection Agency. 1999. Technical Policy on Prevention and Control of Motor Vehicle Pollution. Beijing. Dassbach, C. 1994. Where is North American automobile production headed? Low-wage lean production. Electronic Journal of Sociology 1(1). Davis, B. H. 1999. Transportation Energy Data Book: Ed. 19. ORNL-6958. Oak Ridge National Laboratory, September. Dec, J. E. 1997. A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE Technical Paper No. 970873. Society of Automotive Engineers. DeCicco, J., F. An, and M. Ross. 2001. Technology Options for Improving the Fuel Economy of U.S. Cars and Light Trucks by 2010–2015. American Council for an Energy Efficient Economy, Washington, D.C., April. De Witt, M. J., and C. Z. Wan. 2000. Establishing capabilities to evaluate reductants for NOx adsorber technologies. Paper presented at the 6th Diesel Engine Emissions Reduction Workshop, August. Ehsani, M., A. Emade, and H. Gao. 2001. 42V Automotive Power Systems. SAE Technical Paper No. 2001-01-2465. Presented at the Future Transportation Technology Conference, Costa Mesa, Calif., August. EV News. 2000. June. Flynn, P. F. 2000. Diesels—Promise and issues. Paper presented at the 6th Diesel Engine Emissions Reduction Workshop, August. ———. 2001. Diesels 2007—Promise and problems. Paper presented at the 7th Diesel Engine Emissions Reduction Workshop, August. Flynn, P. F., R. P. Durrett, G. L. Hunter, L. A. Farrell, and O. C. Akinyemi. 2000. Minimum Engine Flame Temperature Impacts on Diesel and Spark-Ignition NOx Production. SAE Technical Paper No. 2000-01-1177. Society of Automotive Engineers. Flynn, P. F., R. P. Durrett, G. L. Hunter, A. O. zur Loye, O. C. Akinyemi, J. E. Dec, and C. K. Westbrook. 1999. Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, and Empirical Validation. SAE Technical Paper No. 1999-01-0509. Society of Automotive Engineers. General Motors Corporation (GMC). 2001. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems: North American Analysis. Executive Summary Report, Detroit, April. Höhlein, B., J. Nitsch, and U. Wagner. 1998. Brennstoffzellen-Studie (Fuel Cell Studies): Vorhaben Nr. 686, Ganzheitliche Systemuntersuchung zur Energiewandlung durch Brennstoffzellen. Forschungsvereinigung Verbrennungskraftmaschinen e.V., Frankfurt am Main.

OCR for page 61
Personal Cars and China Horton, E. J., and W. D. Compton. 1984. Technological trends in automobiles. Science 225:588. Jost, K. 2002. Spark-ignition engine trends. Automotive Engineering International (January). Kummer, J. T. 1981. Catalysts for automobile engine control. Progress in Energy and Combustion Science 6:177–199. Moore, B. 1999. Advanced energy systems. Paper presented at the SAE Topical Technology Workshop on Hybrid Electric Vehicles: Here and Now (TOPTEC). SAE (Society of Automotive Engineers) International, Warrendale, Pa. Naber, J. D., and D. L. Siebers. 1996. Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays. SAE Technical Paper No. 960034. Society of Automotive Engineers. National Research Council (NRC). 2000. Review of the Research Program of the Partnership for a New Generation of Vehicles. Sixth Report. Washington, D.C.: National Academy Press. ———. 2002. Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards. Washington, D.C.: National Academies Press. Office of Technology Assessment. 1995. Advanced Automotive Technologies: Visions of a Super-Efficient Family Car. OTA-ETI-638. Washington, D.C.: Government Printing Office. Ogden, J. M., M. M. Steinbugler, and T. G. Kreutz. 1999. A comparison of hydrogen, methanol, and gasoline as fuels for fuel cell vehicles: Implications for vehicle design and infrastructure development. Journal of Power Sources 79:143–168. Pembina Institute. 2000. Climate-Friendly Hydrogen Fuel: A Comparison of the Life-Cycle Greenhouse Gas Emissions for Selected Fuel Cell Vehicle Hydrogen Production Systems. Pembina Institute, Drayton Valley, Alberta, March. Rovera, G., and D. Mesaiti. 1999. The general purpose hybrid vehicles. Paper presented at the SAE Topical Technology Workshop on Hybrid Electric Vehicles: Here and Now (TOPTEC). SAE (Society of Automotive Engineers) International, Warrendale, Pa. Sher, E., ed. 1998. Handbook of Air Pollution from Internal Combustion Engines: Pollutant Formation and Control. Boston: Academic Press. Siebers, D. L. 1999. Scaling liquid-phase fuel penetration in diesel sprays based on mixing limited vaporization. Paper presented at 1999 Congress of the Society of Automotive Engineers, Detroit, February. Sierra Research. 1997. Automotive fuel economy potential using cost-effective design changes. Sierra Research, Buffalo, N.Y. Singh, M., R. Cuenca, J. Formento, L. Gaines, B. Marr, D. Santini, M. Wang, S. Adelman, D. Kline, J. Mark, J. Ohi, N. Rau, S. Freeman, K. Humphreys, and M. Placet. 1998. Total Energy Cycle Assessment of Electric and Conventional Vehicles: An Energy and Environmental Analysis. ANL/ES/RP-96387, Argonne National Laboratory. Society of Automotive Engineers. 2001. Fuel Cell Power for Transportation 2001. SAE SP-1589. ———. 2002. Fuel Cell Power for Transportation 2002. SAE SP-1691. Stodolsky, F., L. Gaines, C. Marshall, and F. An. 1999. Total Fuel Cycle Impacts of Advanced Vehicles. SAE Technical Paper No. 1999-01-0322. Society of Automotive Engineers. Toyota. 1997. Prius Product Information 2000. Toyota Hybrid System, Toyota Press Information 1997. U.S. Council for Automotive Research. 2000. U.S. Advanced Battery Consortium Battery Criteria: Commercialization. Online. USCAR. Available at www.USCAR.org. Accessed May 2000. U.S. Department of Energy. 1999. Hybrid electric vehicle component information. Online. Available at www.hev.doe.gov/components/batteries.html. Accessed June 13, 2002. ———. 2001. Fuel Cells for Transportation. 2001 Annual Progress Report, December.

OCR for page 61
Personal Cars and China Wang, M. Q. 1999. GREET 1.5—Transportation Fuel-Cycle Model, Volume I: Methodology, Development, Use, and Results . ANL/ESD-39. Argonne National Laboratory, August. Wang, M. Q., and H.-S. Huang. 1999. A Full Fuel-Cycle Analysis of Energy and Emissions Impacts of Transportation Fuels Produced from Natural Gas. ANL/ESD-40. Argonne National Laboratory, December. Weiss, M. A., J. B. Heywood, E. M. Drake, A. Schafer, and F. F. AuYeung. 2000. On the Road in 2020: A Life-Cycle Analysis of New Automobile Technologies. MIT Energy Laboratory Report #MIT-EL-00-003. Massachusetts Institute of Technology, Cambridge. Wengel, J., and E. Schirrmeister, eds. 2000. The Innovation Process from the Internal Combustion Engine to Fuel Cells. Fraunhofer-Institute, Karlsruhe, Germany, February. Westbrook, C. K., and L. K. Chase. 1988. Chemical Kinetics and Thermochemical Data for Combustion Applications. Lawrence Livermore National Laboratories Report UCID-17833. Westbrook, C. K., W. J. Pitz, and W. R. Leppard. 1991.The Autoignition Chemistry of Paraffinic Fuels and Pro-Knock and Anti-Knock Additives: A Detailed Chemical Kinetic Study. SAE Technical Paper No. 912314. Society of Automotive Engineers. Williams, R. 1998. Fuel cells, coal, and China. Paper presented at the Ninth Annual U.S. Hydrogen Meeting: Implementing a Global Solution, Washington, D.C. Zhan R., R. Hurley, W. Han, J. A. Lymburner, D. Schuetzle, J. Li, G. Wu, L. Xu, H. S. Gandhi, R. Huang, and D. Deng. 2001. The Development of Low Precious-Metal, Rare-Earth Oxide (Reo) Catalysts for Vehicle Emission Control in Emerging Markets. SAE Technical Paper No. 2001-01-0225. Presented at the SAE 2001 World Congress, March, Detroit. Society of Automotive Engineers.